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Chapter
1

Introduction

This manual explains the functionality of the software library Charon. It also contains a number
of actual programming examples in both Fortran 77 and C. Charon is intended for scientific
programmers who are responsible for developing numerical software for the solution of partial
differential equations on structured grids. This may entail either conversion of existing (vector)
codes, or development from scratch.

Readers of this manual should be familiar with C or Fortran to understand the examples
and declarations given, although the concepts on which Charon is based do not depend on the
language of implementation. The reader is also assumed to have a basic grasp of the Message
Passing Interface (MPI) standard [23], which specifies how processes on multi-computer systems
exchange data, although only very few details are needed. Experience with message passing
applications and parallel computing in general is an advantage, but it is not necessary. The
benefit of such experience is that it makes it easier to appreciate why certain design choices were
made.

1.1 How to read this manual

The subsequent chapters describe all the details of the current implementation of Charon, so
that the experienced programmer can take full advantage of all its facilities. The novice parallel
programmer may want to skip certain parts at first reading.

A recommended first introduction to the Charon way of developing parallel programs starts with
Chapter 2, which presents a brief summary of the whole library.

Skim over Chapter 3, Sections 3.1 through 3.4, to understand the principles of Charon’s data
distribution, skipping any ugly details. But study the programming examples given in Section
3.5, looking up any functions used in the examples that were skipped earlier.

Read Chapter 4 to learn about how operations can be performed on distributed data sets, but
skip Sections 4.2, 4.3 and 4.4. Of the distributed execution examples in Section 4.5, read only
the first (Section 4.5.1).
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All of the short Chapter 5 should be read, as it explains how a distributed program is turned into
a true parallel program.

Chapter 6, among the most important of this manual, describes how Charon’s grid data com-
munication functions work. In a first reading, skip Section 6.2 on unstructured communications,
and the corresponding example in Section 6.4.2.

Any programmer interested in reading and writing distributed arrays should read the short Chap-
ter 7 on distributed 1/0.

Although it is not important for the understanding of Charon, it may be useful to consult Chapter
8 on diagnostics once the reader starts writing and debugging programs.

Chapter 9 on advanced topics can probably be skipped altogether initially, unless the programmer
wants to focus on converting vector codes to parallel codes.

Chapter 10 contains practical parallel programming advice and presents a number of examples
the reader may want to examine before starting to use the library.

1.2 About the examples

The programming examples presented throughout the manual include simple techniques for simple
problems, such as parallelization methods for explicit numerical algorithms. But they also explain
more advanced techniques, such as pipelining, transpose-based methods, and multi-partitioning.
The examples show how to accommodate legacy code constructions such as overindexing (for
vector codes) and index reduction by defining low-dimensional sub-arrays of higher-dimensional
arrays. Practical advice on how to implement staggered grids, where not all physical quantities
are defined at coincident loci of the grid, is given as well. Cell-centered finite-volume grids
are examples of staggered grids. We also dwell on how to accommodate multiple topologically
independent grids.

1.3 Parallelization approaches

Many strategies have been devised in the past to facilitate writing programs for multi-processor
computers. These roughly fall into the following categories:

— parallel languages and language extensions (HPC++ [14], HPF [15], Split C [8], etc.),

— parallelizing compilers and compiler directives for (virtual) shared-memory systems (SUIF
[12], X3H5 [21], OpenMP [9], etc.),

— message passing (MPI [23], PVM [11], Linda [7], etc.).

Projects in each of these categories have enjoyed a certain level of success, but not a single winner
has come out of all the academic and commercial parallelization projects [27]. Indeed, it can be
argued that a completely general parallelization technique may never surface. At the same time,
practical problems need to be solved. The logical approach is to narrow the focus and develop
parallelization tools that are efficient and powerful within a certain application area.
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1.4 Charon library built on message passing

Charon is a toolkit that enables the quick development of complicated scientific applications that
are based on structured discretization grids. Such grids are common in the solution of partial
differential equations that describe the physics of fluid flow, heat transfer, radiation, electron
transport, etc. The toolkit takes the form of a set of library functions that can be called from C
and Fortran programs. Charon is based on the message passing concept, and augments the de
facto message passing standard MPI (Message Passing Interface). It can be installed and run on
any system that supports MPI. It also works on single-processor non-MPI systems, in which case
a partial MPI stub library (provided in the Charon package) must be linked.

No (pre-)compiler is provided. All functions and subroutines are implemented as (mostly
standard) C and Fortran language constructs. The reason for this is to enhance portability of the
library. It also frees us from the requirement of having to supply language parsers, which have
inherent limitations.

1.5 Encapsulation in three-tiered design

The message passing approach to parallel scientific computing usually involves the distribution
of data (arrays) among different processors. While this programming model is simple, it is also
cumbersome. The programmer is responsible for the explicit restriction of data structures and
operations to individual processors'. Certain packages, for example KelLP [10], OVERTURE
[5], and PETSc [3], partly avoid this difficulty by providing encapsulation. That is, high-level
distributed data structures are defined with minimal user input. Subsequently, the user can apply
predefined operations to the distributed data. Mostly, this comes down to the specification of
data parallel operations. This is very convenient when the numerical algorithm can be specified
in data parallel terms, but it has two major disadvantages.

First, the user has little control over how the data is laid out in memory on the individual
processor. Layout can greatly affect performance on modern computer systems with hierarchical
memories. Second, this style of programming requires a definite change in program structure
when a serial legacy code is to be converted. Moreover, if a certain operation is not present in
the set of predefined operations, the user must somehow get access to the data and apply the
operation ‘by hand’. This sometimes requires copying data to user buffers, which is expensive,
or involves the awkward mechanism of returning offsets from certain user-specified ‘anchors’ in
memory (PETSc [4]).

In addition to functions that distribute the data, Charon provides parallelization tools at
three levels of abstraction. At the top level, which is easiest to use, assignments to distributed
array elements are completely encapsulated straightforward translations of assignments in a serial
program or design. No change in program structure is required. As the programmer replaces
high-level Charon constructs with mid-level functions, less encapsulation takes place, until, at the
lowest level of abstraction, there is no encapsulation at all. Hence, a program being parallelized
using Charon gradually changes from high to low levels of encapsulation. Since Charon functions

1We speak mostly of processors in this manual, although formally the word processes would usually be more
appropriate.
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at all levels of abstraction can be freely mixed, the programmer is never deprived of direct access
to the data.

1.6 Language issues

Ease of use is one of the foremost goals of Charon. This sometimes results in unorthodox use of
the languages in which the library has been implemented, most notably in Fortran 77. The ISO C
implementation strays less from the standard. When Charon procedures are introduced, both the
C and the Fortran syntax is presented. To make the distinction, we print all Fortran subprogram
names in capitals, but the case sensitive C functions in the correct mixed-case format, with the
first word following the CHN prefix (the head) capitalized. If the head is a verb, for example in
CHN_Assign, the procedure is usually a subroutine (in Fortran), or a function returning an error
code (in C). Such procedures are invoked for their side effects. If the head is a noun or adjective,
for example in CHN_Address, the procedure is a function proper, whose prime result is its return
value. We also indicate, in the style of the MPI Reference Manual [23], which of the arguments to
Charon procedures are only read (IN), which are only written (OUT), and which are both written
and read (INOUT). We follow the practice of marking a handle to a Charon variable as OUT or
INQOUT if the contents of the variable is changed, even if the handle itself is not affected.

1.6.1 Variable-length parameter lists

To keep the library small, Charon defines all operations independent of the dimensionality of the
problem (number of spatial dimensions of the discretization grid). Some of these operations
require as input a set of parameters of the length of the problem dimensionality, for example to
specify the coordinates of a point in the grid. This can in principle always be handled by defining
and filling arrays of the appropriate length and passing the starting address of the array to the
function in question. However, this is very inconvenient, since it requires multiple assignmenmts
by the user before every such function call.

To avoid this problem we use the mechanism of variable-length argument lists. This is ade-
quately supported in C and Fortran 90, but not in Fortran 77. Rather than making an exception
for old Fortran compilers, we adopt the common practice of defining the Fortran 77 functions
with the longest expected number of parameters, but calling them with the actual number of
parameters. Most current compilers will accept this practice, although some will issue an error if
two function calls with different numbers of arguments occur in the same file. Often this situation
can be avoided by placing the offending calls in different files. A future Fortran 90 implementation
will fix this problem.

1.6.2 Function returning address

The Charon function CHN_Address returns a value that is used as an Ivalue (address) by the
CHN_Assign or CHN_Invoke routines. This is no problem in C, but Fortran does not allow it.
Consequently, in Fortran such values are converted to ADDRESSTYPEs—often INTEGERs—that
are the same size as C void pointers. The same holds for the return values of the functions CHN_
Mvalue and CHN_Start_address. Determination of the actual Fortran type of ADDRESSTYPE
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occurs during installation of Charon and is of no concern to the application programmer; it only
reflects on the declaration of the return types of the three aforementioned functions in the include
file charonf .h.

1.6.3 Choice variables

One of the most important Charon functions, CHN_Create_distribution, is used to create a
distributed array, and to assign an amount of user-allocated memory to it; the function is passed
the starting address of that memory. Distributions can have one of nine data types (five in Fortran,
and four in C), and hence starting addresses can be one of nine types as well. To avoid having
to define multiple instances of the same function for different data types, we regard the starting
address as a choice variable that is cast to the right type inside CHN_Create_distribution (or
CHN_Set_start_address).

1.6.4 Interoperability

Language interoperability refers to the possibility of passing data structures created in one lan-
guage to program segments written in another language. For Charon the two choices for the
language are C and Fortran. All Charon parameters and data structures are represented by inte-
gers (handles; see Section 1.8), which have the same meaning—and the same numerical value—in
both C and Fortran. In MPI, however, data structures in C, though opaque to the user, need not
be integers, and when Charon uses these, it matters whether they originate from a C or a Fortran
program segment. Since MPI 1 does not provide language interoperability (see Section 1.12),
Charon cannot either. That does not mean that all Charon programs must be written either
completely in C or completely in Fortran. The three MPI constructs appearing in the Charon
user interface are the communicator (MPI_Comm), the (elementary) data type (MPI_Datatype),
and the reduction operator (MPI_Op). The only requirement that Charon poses is that these
constructs be compatible, i.e. originating from the same language, whenever they are referenced
together indirectly. For example, a grid variable defined in Fortran (and, hence, with a Fortran
MPI communicator) cannot be used to define a distribution in C, with a C MPI data type.

1.7 Indexing

Many variables in Charon require indexing. Since the whole library is implemented in C, it is
most natural to have all indices start at 0. Hence, cuts, coordinate dimensions, cells, etc. are all
numbered starting with 0. The only exceptions are (possibly) the points in a grid (see Section
3.1) and the indices of a tensor (see Section 3). They are ordinarily also numbered starting
with zero, but in order to be fully compatible with legacy code practices, these defaults can be
overridden.

We reserve the word indices proper for grid points indices and tensor indices. Subscripts are
used for indexing distributed arrays. The latter usually consist of a combination of grid point
indices and tensor indices.



10 INTRODUCTION

1.8 Handles

All Charon data structures created by the user are so-called opaque objects. They are represented
by handles (aliases) that are of integer type in both C and Fortran. The contents of the data
structures can not be accessed directly, but can only be changed by invoking additional Charon
functions.

1.9 Error handling

When a Charon function is invoked with the wrong parameters or otherwise produces an error
condition, the type of error returned depends on the function in question. All functions that
are invoked strictly for their side effects (subroutines in Fortran) return an integer error code.
Successful completion of such a function is indicated by the error code CHN_SUCCESS, which has
the numerical value of zero. All other error codes are large negative numbers.

If the error is due to a faulty input value, it is termed a user error. See the list of error codes
on page 117. Other errors are termed system errors. They are usually caused by insufficient
memory, or by failing calls to the MPI library.

C functions return the error code as the return value, which can be ignored by the programmer.
In the corresponding Fortran subroutine the error code is the last parameter in the parameter list.
The reason for this asymmetry is that Fortran cannot ignore return values.

If a function returns an actual value and an error occurs, the result is a value that will usually
not occur in user code. The particular error return values will be given in the sections that
describe the functions.

1.10 Charon function execution modes

MPI defines five important distinguishing attributes of functions. In the current version of Charon,
which does not support asynchronous communications at the user level, three of these types are
relevant. For completeness, we paraphrase the MPI| explanations of these types.

A procedure is local if its completion depends only on the local executing process. Such an
operation does not require an explicit communication with another user process. Charon calls
that generate local objects or that query the state of local objects are local (a local object is a
Charon data structure created by and within the calling process).

A procedure is non-local if it may require the execution of some Charon procedure on another
process. All Charon communications are non-local.

All Charon data structures have meaning only within a specific set of processes, called their
process group (this group corresponds to an MPI communicator). A procedure is collective if all
processes in the process group determined by the Charon data structures named in the procedure
call must invoke the procedure, and with identical user arguments. An important variation is the
set of pseudo-collective procedures. A procedure of this kind will always complete successfully
(provided its arguments are valid and system memory suffices) if called as a collective procedure.
But it only needs to be called by those processors whose state changes as a result of the execution
of the procedure. For example, Charon communication routines can safely be skipped by those
processors that neither send nor receive data.
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We note that a procedure may be collective, but local. For example, the function creating a
grid data structure must be passed the same dimensions and communicator on all the processes
within that communicator, but no communication is necessary.

The execution mode of some Charon functions can be changed by another Charon function.
For example, the function CHN_REAL_VALUE, whose mode is ordinarily non-local, can be changed
to local through the function CHN_Begin_local.

1.11  Using Charon library

Unlike MPI, Charon does not require that an initialization routine be called. The user only need
include the header file charon.h in C programs, and charonf.h in Fortran programs?. But if
Charon is to be used in conjunction with MPI, the standard MPI initalization routine needs to
be called before any calls to Charon and MPI are made [23, page 291]. Likewise, for proper
termination of the MPI application, MPI_Finalize must be called at the end of the program.
To obtain the proper MPI function prototypes (in C) and function return types, as well as the
proper values for MPI constants, the standard MPI header files (mpi.h in C, mpif.h in Fortran)
must be included before the Charon header file.

1.12 About the current version

Several features are planned for future release, but are not included in the current version of
Charon. They are the following.

e PARALLEL I/O. With the specification of parallel 1/0O in the follow-up to the popular
MPI standard, MPI 2 [18], it is now possible, in principle, to construct portable functions
that utilize parallel file systems to read and write distributed variables or parts of them. A
prototype implementation of parallel 1/O functions for grid-based applications with good
performance results was reported in [26]. However, because of the limited number of sites
that have installed MPI 2 at present, it was decided not to rely on MPI 2 availability for
this Charon release. Reading and writing distributed arrays from and to files is possible (see
Chapter 7), but is limited to serial execution.

e NONBLOCKING, ASYNCHRONOUS COMMUNICATIONS. Although many of the Charon
communications functions use nonblocking, asynchronous MPI communication primitives
internally, the Charon functions themselves have blocking, synchronous semantics. In the
next release of Charon, asynchronous versions of all communications will be provided.

e MESSAGE AGGREGATION. Although some optimization of complicated Charon commu-
nications is already available through communication caching (see Section 9.3), the po-
tentially more rewarding optimization of automatic message aggregation has not yet been
implemented. This can be especially beneficial if many unstructured communications are
used (CHN_Get/Put_tile, CHN_Reduce/Bcast_tile), or if the domain decompositions

2If the Fortran compiler does not support the include facility, the programmer must insert the text of the
header file itself in the program.
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predefined within Charon are not sufficient. However, unless the majority of the Charon
operations involve custom decompositions and unstructured communications, message ag-
gregation will not affect performance much. Full implementation of message aggregation
is planned for the next Charon release.

In situ REDISTRIBUTION. Mapping one data distribution to another CHN_Redistribute
currently requires the storage locations of source and target distributions to be completely
disjoint. This allows relatively simple and swift copying of blocks of the distributed data,
but may pose a memory problem. In the next Charon release the user will be allowed to
specify (partially) overlapping memory locations, although it is recommended not to use
this option unless absolutely necessary.

ForRTRAN LiMITS. Certain Charon functions accept a number of arguments that varies
with the number of spatial dimensions of a grid (CHN_Cell_index and CHN_Point_owner),
with the tensor rank of a distribution (CHN_Create_distribution), with the total number
of subscripts of a distribution (CHN_Address and CHN_Value (several types)), with the
number of fixed subscripts of a distribution (CHN_Set_fixed_subscripts), and with the
number of buffers for a user-specified procedure (CHN_Invoke). In C there is no limit to
this variable number of arguments, but in Fortran the maximum number for each of the
spatial dimensions, subscripts, and buffers in the current version of Charon is nineteen.

USER-DEFINED MPI DATA STRUCTURES. Charon currently circumvents the difficulty
of MPI language interoperability by prohibiting the use of user-defined MPI data struc-
tures. The only impact this has on the library is that the programmer cannot customize
communicators. Work is in progress that will remove this restriction, so that the limited
language interoperability described in Section 1.6.4 will be supported. Once MPI 2 is widely
available, full C/Fortran interoperability will be supported.
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Overview

Charon supports the parallelization of programs using multi-dimensional arrays related to struc-
tured grids. How this is done is explained in this chapter, which gives an overview of the whole
library. Charon parallelization is based on the premise that the programmer knows best. Even
fairly advanced parallel algorithms for structured-grid applications can usually be explained quite
easily, which means that most algorithms are conceptually simple. It is the implementation that is
frequently complex. Charon makes that complexity manageable by offering certain ‘bookkeeping’
services to the programmer, and by providing a vehicle for piecemeal transition from a serial to a
parallel program.

2.1 Domain decomposition and data distribution

Most algorithms of our interest that are meant for distributed-memory parallel computers are
based on domain decompositions; the amount of computational work per point in a grid is often
fixed, so by distributing equal-sized sets of points to different processors, all have the same amount
of work to do. With every point is usually associated a fixed amount of data. For example, in a
three-dimensional compressible fluid flow calculation one will want to store at each grid point the
values of density, x-, y-, and zz-momentum, and the specific energy. Depending on the complexity
of the algorithm, more data elements will be stored at each grid point. If the same processor
keeps working on the same set of points throughout the calculation, most of the data associated
with these points can be kept local (in that processor’'s memory).

Often stencil operations are part of the algorithm, which means that for computation of
values at grid points, values from neighboring grid points are needed. If these points belong to
other processors, retrieving the requested values may take a long time, due to the slowness of
so-called interprocessor communication. Hence, it is beneficial to keep both the number and size
of such requests to a minimum. This is accomplished at least in part by distributing geometrically
compact subsets of the grid points to the different processors.

Compact sets have a small surface-to-volume ratio. Whereas the amount of useful compu-

13



14 OVERVIEW

tational work is proportional to the volume of the set, the amount of communication overhead
is proportional to the surface area. In physical space the (hyper)sphere has the most favorable
surface-to-volume ratio, as is evidenced by the result of the action of surface tension on isolated
drops of mercury. In computational space, the best surface-to-volume ratios are obtained by
Cartesian-product subsets of points with unit aspect ratios (squares in two dimensions, cubes in
three dimensions, etc.). Consequently, the best domain decomposition strategy for structured-
grid applications would appear to be that which divides each grid into cubical blocks or cells
of equal size, and assigns each cube to a different processor. This is true for algorithms with-
out strong data dependencies (see below), but not for many others of interest to the scientific
computing community.

If the numerical algorithm allows that the points in the grid be visited in any order, for example
in a point-Jacobi update scheme, the algorithm is said to be naturally data parallel. Another way
of expressing this property is by stating that the numbering of points does not influence the result
of applying the algorithm. If the order in which points are visited does matter, for example in a
Gauss-Seidel update scheme, then data dependencies are said to exist, and the algorithm may no
longer be data parallel. Renumbering points changes the outcome of the method.

Strong data dependencies influence the optimal way in which a grid should be distributed
(partitioned), and the particular partitioning scheme is best specified by the programmer. The
data distribution process consists of four fundamental steps:

1. Define a grid data structure that specifies the dimensionality of the problem, and the
number and indices of the points at which array variables may be defined.

2. Create a partitioning in cells (grid sub-blocks), which are created by intersecting the grid
with cutting planes (cuts) that are parallel to coordinate planes. The result is a section
data structure.

3. Assign cells to processors. The result is a decomposition data structure.

4. Create the multi-dimensional, distributed array and associate it with a decomposition and
local storage space. The result is a distribution data structure.

The reason why we divide the distribution process into four steps, rather than collapsing it
into a single one, is that this maximizes user control and provides an easy means of testing parallel
algorithms. At the same time, the four data structures have a natural meaning that should be
easy to master by the programmer. Each data structure can serve as the basis for defining many
different derived (higher-numbered) data structures.

For example, a user may divide a grid into ten slices, with the intent of solving a problem
on as many processors. Hence, the section data structure contains nine cuts. But the code may
be tested on a single processor by assigning all cells (slices) to the same processor when defining
the decomposition. In turn, a single decomposition of the grid can be used to distribute scalar,
vector, or tensor fields. When the abovementioned ten-slice uni-processor code is ultimately run
on the intended ten processors, all the user needs to change is the definition of the decomposition,
keeping all the grid, section, and distribution variables the same.
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2.2 Distributed and concurrent execution

Once distributed variables have been defined for all the grid arrays in the application, the assign-
ments involving elements of the arrays have to be cast in a form that Charon can interpret. They
also have to be scheduled so that data dependencies are respected, while making sure that all pro-
cessors have work to do at all times. Developing such a schedule so that a balanced load and truly
concurrent execution ensues, is nontrivial for many applications. It is the source of many coding
errors, because the data distribution has an impact on virtually all program statements. It would
be easier if the program could first be written without concern for the distribution—generally
very inefficient—and be tuned for performance later.

This is the approach taken by Charon. First, all assignments to elements of arrays in the serial
code (or code design) are replaced by library calls (CHN_Assign). These take into account the
distributed variables on left and right hand side, and the points in the grid at which these variables
ought to be evaluated (right hand side: CHN_Value) or assigned (left hand side: CHN_Address).
Other than that, all program logic remains serial. Charon inspects (the components of) the right
hand side, determines which processors contribute to it, and arranges for them to furnish the
processor responsible for updating the left hand side with the concerned values. This happens
behind the scenes, and the user does not have worry about any details of the data distribution or
communication requests while inserting CHN_Assign calls. All remote data requests are implicitly
invoked and satisfied.

All processors execute the same (serial) code, so no speed gain is obtained. Moreover, since
each assignment carries with it the possibility of a communication, very many data exchanges
between processors will occur, which slows the program execution even more. But the important
accomplishment is that the single processor code has been moved to a distributed-memory plat-
form in a simple and foolproof fashion that guarantees that an originally correct implementation
remain correct.

Subsequently, the user inserts calls that instruct Charon when it is safe for certain processors to
skip some of the statements and when to suppress requests for data from remote processors (CHN_
Begin/End_local). In the case of stencil operations, assignments to points at the boundaries
of cells owned by the calling processor still require data from geometrically adjacent processors.
Such requirements must now be satisfied explicitly by the programmer, namely by copying data
from the ‘faces’ of adjacent cells to the calling processor. This is done by the function CHN_
Copy_faces, which copies data from adjacent cells into a border of auxiliary or ‘ghost’ points
on the calling processor.

Another way of explicitly satisfying remote data requests may be obtained by redistributing
the grid (CHN_Redistribute). For example, an application programmer may originally have
partitioned a grid in the x-coordinate direction. But when a program segment is entered in which
frequent reference is made to points with offsets only in the x-direction and not in the y-direction,
the programmer may switch to a partitioning that divides the y-direction but keeps the x-direction
undivided. This is generally called a transposition operation. Other kinds of redistributions are
also available in Charon.

In case of non-stencil operations, the CHN_Copy_faces and CHN_Redistribute routines may
not suffice to retrieve data from remote processors. The function CHN_Get_tile can be used to
fetch arbitrary Cartesian-product subsets of the distributed array and store them on the calling
processor.
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The process of bypassing implicitly invoked communications and restricting execution of cer-
tain program fragments to certain processors is error prone. But because we start from a correct
distributed implementation, we need only convert small parts of the code at a time, and can leave
the rest unchanged. When the whole code has been converted, the program is both distributed
and concurrent.

Finally, the expensive library calls CHN_Assign, CHN_Address, and CHN_Value must be elim-
inated altogether. At this point, the programmer must use local indexing for those parts of the
distributed arrays owned by the calling processor. This process also potentially leads to errors,
but again it can be undertaken one step at a time. Moreover, query functions in Charon help the
programmer in keeping the index bookkeeping straight.

Many parallel single-grid applications can be coded efficiently using only Charon communica-
tion and query functions. However, certain important multi-zone or multi-discipline applications
cannot be fully served by Charon. For this purpose the MPI library is available to the user,
who can always arrange for inter-grid or inter-discipline communications to occur through plain
message passing. MPI| may also be used if the user is not satisfied with the communication
performance or functionality of Charon. This places another level of performance tuning at the
disposal of the programmer.



Chapter
3

Data distribution support tools

3.1 Grids

The programmer wishing to define a discretization grid of a certain dimensionality calls the
function CHN_Create_grid. It allocates space for the variable and sets the handle grid to a
positive value (zero in case of failure). One of the inputs is an MPI communicator created by
the user, or the predefined MPI_COMM_WORLD, which contains all the processors allocated to the
parallel program. The communicator is one of the few direct links between Charon and MPI
visible to the programmer (the others are MPI_Datatype, used in the definition of distributions
(Section 3.4) and MPI_Op used in the reduction operation CHN_Reduce_tile (page 74)). lts
significance is that in operations on variables derived from the grid that require cooperation of
processors, at most the processors in the communicator will participate. If the calling processor
is not a member of the communicator, the creation completes successfully, but an invalid grid
handle is returned.

All functions that create, modify, or destroy a grid must be called by all the processors in the
communicator, with the same parameters; they are local, collective operations.

int CHN_Create_grid(int *grid, MPI_Comm comm, int num_dims)
CHN_CREATE_GRID(grid, comm, num_dims, ierr)
integer grid, comm, num_dims, ierr

OUT grid handle to grid data structure
IN comm handle to MPIl communicator
IN num_dims number of spatial dimensions

CAUTION: The communicator used in the definition of the grid data structure is used by
Charon communication functions, and it is possible that these suffer from interference caused
by (asynchronous) MPI user communications employing the same communicator. This can be
avoided by using a duplicate communicator (MPI_Comm_dup) in the grid definition.

17
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Setting the size of the grid in a particular coordinate direction is done using CHN_Set_grid_
size. Only strictly positive grid sizes are allowed. It is important to recognize that no actual
coordinate values at the grid points are specified by this function, but only the range of coordinate
indices. Coordinate values of the generally curvilinear grid can be stored in a distributed variable
(see Section 3.4). Once its sizes in all coordinate dimensions are defined, the grid is ready for
use.

int CHN_Set_grid_size(int grid, int dir, int size)
CHN_SET_GRID_SIZE(grid, dir, size, ierr)
integer grid, dir, size, ierr

INOUT grid handle to grid data structure
IN dir coordinate direction
IN size dimension of grid

By default grid indices start with 0, so setting a grid size to n makes available indices 0
through n — 1. The default can be overridden by the function CHN_Set_grid_start_index.
Any integer starting index (possibly negative) is allowed.

int CHN_Set_grid_start_index(int grid, int dir, int start_index)
CHN_SET_GRID_START_INDEX(grid, dir, start_index, ierr)
integer grid, dir, start_index, ierr

INOUT grid handle to grid data structure
IN dir coordinate direction
IN start_index starting index of grid

Finally, a grid variable can be destroyed, and its handle reset to zero, by the CHN_Delete_
grid function. A grid should not be deleted or modified if other Charon variables derived from
it are still in use.

int CHN_Delete_grid(int *grid)
CHN_DELETE_GRID(grid, ierrr)
integer grid, ierr

INOUT grid handle to grid data structure

3.1.1 Grid query functions

Query functions return the parameters that make up the grid. These are the already defined
dimensionality, communicator, sizes, and starting indices. For convenience we also provide the
ending indices of the grid, and the rank of the calling processor within the communicator.

int CHN_Grid_dimensionality(int grid)

integer function CHN_GRID_DIMENSIONALITY(grid)
integer grid

Error return value: Greatest representable negative integer

IN grid handle to grid data structure
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MPI_Comm CHN_Grid_comm(int grid)

integer function CHN_GRID_COMM(grid)
integer grid

Error return value: MPI_COMM_NULL

IN grid handle to grid data structure

int CHN_Grid_size(int grid, int dir)

integer function CHN_GRID_SIZE(grid, dir)
integer grid, dir

Error return value: Greatest representable negative integer

IN grid handle to grid data structure
IN dir coordinate direction

int CHN_Grid_start_index(int grid, int dir)

integer function CHN_GRID_START_INDEX(grid, dir)
integer grid, dir

Error return value: Greatest representable positive integer

IN grid handle to grid data structure
IN dir coordinate direction

int CHN_Grid_end_index(int grid, int dir)

integer function CHN_GRID_END_INDEX(grid, dir)
integer grid, dir

Error return value: Greatest representable negative integer

IN grid handle to grid data structure
IN dir coordinate direction

int CHN_Rank(int grid)

integer function CHN_RANK(grid)
integer grid

Error return value: —1

IN grid handle to grid data structure

3.2 Sections

A section data structure is used to indicate how a discretization grid is divided into a number of
contiguous blocks of grid points (cells). It is based on a previously created, completed Charon
grid data structure. After the section is initialized, cuts are made, meaning cutting planes parallel
to coordinate planes are defined. This can be done one by one, or by calling one of the predefined
cutting strategies used for creating common domain decompositions. Cells, demarcated by cutting
planes and/or the boundaries of the grid, are Cartesian-product subspaces. Together they form a
disjoint covering of the grid, so a loop over all the grid points in all the cells visits each point in
the grid exactly once. The word ‘section’ is short for Cartesian section. All functions that create,
modify, or destroy a section, are local and collective. Query functions are local.
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int CHN_Create_section(int *section, int grid)
CHN_CREATE_SECTION(section, grid, ierr)
integer section, grid, ierr

0OUT sectiomn handle to section data structure
IN grid handle to grid data structure

Upon creation a section is automatically initialized with —1 cuts—an invalid number—in
all coordinate directions. Cuts can be placed using elementary Charon operations. First, the
programmer must declare the number of cuts in the relevant coordinate direction.

int CHN_Set_num_cuts(int section, int dir, int num_cuts)
CHN_SET_NUM_CUTS(section, dir, num_cuts, ierr)
integer section, dir, num_cuts, ierr

INOUT section handle to section data structure
IN dir coordinate direction
IN num_cuts number of cuts in this coordinate direction

Actual cuts are either placed individually, or all at once, for a certain coordinate direction. A
cut value of n means that a cutting plane is inserted between grid point indices n — 1 and n.
Cuts must be placed in strictly increasing order of grid point index, that is, a cut with sequence
number k£ has a cut value that is strictly smaller than a cut with sequence number £ + 1. Cut
sequence numbers depend on the relative locations of the cuts within the relevant coordinate
direction of the grid, not on the order in which they are created.

int CHN_Set_cut(int section, int dir, int cut_num, int cut_value)
CHN_SET_CUT(section, dir, cut_num, cut_value, ierr)
integer section, dir, cut_num, cut_value, ierr

INOUT section handle to section data structure
IN dir coordinate direction

IN cut_num sequence number of cut

IN cut_value point index after cut

Figure 3.1 shows a legal cutting of a two-dimensional grid. Point indices start with two in
the first coordinate direction, and with zero (the default) in the second. Notice that the first
coordinate direction is always numbered zero (both C and Fortran), and so is the first cut in any
particular coordinate direction.

While CHN_Set_cut is very flexible, it is cumbersome for many ordinary domain decomposi-
tions. Often a programmer will simply want to divide a grid in a certain direction as evenly as
possible, given a certain number of cuts. Alternatively, the programmer may want to specify a
certain spacing s, meaning that cuts should be placed exactly s points apart. The following two
functions accomplish this.

int CHN_Set_even_cuts(int section, int dir)
CHN_SET_EVEN_CUTS(section, dir, ierr)
integer section, dir, ierr

INOUT section handle to section data structure
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Figure 3.1: Completed two-dimensional section with three cuts

IN dir coordinate direction

int CHN_Set_group_size(int section, int dir, int group_size)
CHN_SET_GROUP_SIZE(section, dir, group_size, ierr)
integer section, dir, group_size, ierr

INOUT section handle to section data structure
IN dir coordinate direction
IN group_size constant spacing between cuts

Usually the specified number of cuts does not divide the grid exactly evenly. Assume n,
cuts and a grid of size n,. Calling CHN_Set_even_cuts results in the following. The first
ng mod (n.+ 1) cuts will be spaced |n,/(n. + 1)| +1 points from the predecing cut (or, for the
first cut, from the grid boundary). The remaining cuts are spaced |n,/(n.+ 1)] points apart.
Of course, the number of cuts in the particular coordinate direction has to be specified first. This
is not required by CHN_Set_group_size, which computes the number of cuts from the constant
inter-cut spacing. When the group size does not divide the grid exactly evenly, only the cell
between the last cut and the ‘end’ of the grid will be shortened.

A section data structure is deleted, and its handle reset to zero, by the CHN_Delete_section
function. A section should not be deleted or modified if other Charon variables derived from it
are still in use.

int CHN_Delete_section(int *section)
CHN_DELETE_GRID(section, ierr)
integer section, ierr

INOUT section handle to section data structure

3.2.1 Predefined sections

Sections for the vast majority of applications can be created even more easily using one of three
predefined sectioning routines. For example, almost all practical methods published over the last
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decade for the solution of discretized partial differential equations on structured grids assign to
each processor one contiguous grid block, or cell. Such a domain decomposition is called a uni-
partition. Given the number of processors P that are members of the communicator on which
the grid is based, it is often possible to compute a sectioning that has exactly that many roughly
equal-sized cells. Exceptions may occur, depending on the uni-partioning strategy, when P or its
integral factors are large compared to the grid size.

For instance, a user may insist on the uni-partitioning of a three-dimensional grid of 17x87x73
points over 137 processors. But 137 is prime and exceeds the size of the grid in all coordinate
directions. Hence, no possible cutting of the grid can result in the required number of cells. If the
number of processors were 140(= 2x(2x5)*7) instead, then placing 1, 9, and 6 evenly spaced cuts
in coordinate directions 0, 1, and 2, respectively, would produce the desired result. These cuts are
chosen such that the created cells are as close to cubical as possible, which minimizes their aspect
ratios and hence their (communication) surface area. Another possibility is to choose the number
of cuts as even as possible in all coordinate directions (in this case 3, 4 and 6 cuts, respectively),
which minimizes the total number of cuts. These two different strategies are associated with
values of the shape parameter of CHN_DEFAULT_SHAPE and CHN_EQUAL_CUTS, respectively. The
shape parameter is all that is required to prepare a section suited for the uni-partition domain
decomposition. Figure 3.2 illustrates its effect on the cutting of a two-dimensional grid for sixteen
processors.

CHN_EQUAL_CUTS
|

Figure 3.2: Effect of shape parameter on uni-partition section

int CHN_Set_unipartition_cuts(int section, int shape)
CHN_SET_UNIPARTITION_CUTS(section, shape, ierr)
integer section, shape, ierr

INOUT section handle to section data structure
IN shape switch; CHN_DEFAULT_SHAPE or CHN_EQUAL_CUTS

Another useful predefined sectioning strategy prepares for the so-called multi-partition domain
decomposition, which is explained in detail in Section 3.4. In this case every processor in the
communicator receives not one but multiple cells, arranged in a regular pattern. In n-dimensional
space a multi-partition decomposition is possible only if the number of processors P can be
written as Pj'"!, where P is an integer (and if the grid size is at least P, in all dimensions). This
poses no divisibility constraints in two dimensions, but requires that the number of processors
be a square in three dimensions, a cube in four, etc. The resulting section contains the same
number of cuts (P, — 1) in all coordinate directions.

int CHN_Set_multipartition_cuts(int section)
CHN_SET_MULTIPARITION_CUTS(section, ierr)
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integer section, ierr

INOUT section handle to section data structure

When defining uni- and multi-partitions it is sometimes convenient to exclude one or more
coordinate directions from partitioning. For example, a three-dimensional grid may be divided
into slices (one-dimensional partitioning) because of strong data dependencies within each slice.
In this case the programmer could place all the cuts ‘by hand’. But it is also possible to inform
Charon that certain coordinate directions should not be divided, which will be respected by the
functions creating the predefined sections. In that case the remaining coordinate directions will
be divided using the lower-dimensional partitioning algorithm.

int CHN_Exclude_partition_direction(int section, int dir)
CHN_EXCLUDE_PARTITION_DIRECTION(section, dir, ierr)
integer section, dir, ierr

INOUT section handle to section data structure
IN dir coordinate direction to be excluded

Both CHN_Set_unipartition_cuts and CHN_Set_multipartition_cuts apply CHN_Set_
even_cuts internally to those coordinate directions that need to be divided.

The last predefined section prepares for the trivial solo-partition domain decomposition. [t
consists of a single cell, assigned to one processor. This simple operation defines zero cuts in all
coordinate directions.

int CHN_Set_solopartition_cuts(int section)
CHN_SET_SOLOPARITION_CUTS(section, ierr)
integer section, ierr

INOUT section handle to section data structure

Fine tuning of cuts placed automatically by CHN_Set_even_cuts, CHN_Set_group_size,
and CHN_Set_uni/multipartition_cuts can be achieved by calling CHN_Set_cut, as long as
the sequence number of the cut and the new cut value are valid. If the number of cuts in a
certain coordinate direction must be changed, the programmer can call CHN_Set_num_cuts, but
any information on previously defined cut values is lost.

3.2.2 Section query functions

Query functions are defined that return for a given section the handle to the grid data structure
on which it is based, the number of cuts in a certain coordinate direction, and the value of a
particular cut, respectively.

int CHN_Grid(int section)

integer function CHN_GRID(section)
integer section

Error return value: —1

IN section handle to section data structure
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int CHN_Num_cuts(int section, int dir)
integer function CHN_NUM_CUTS(section, dir)
integer section, dir

Error return value: —1
IN section handle to section data structure
IN dir coordinate direction

int CHN_Cut(int section, int dir, int cut_num)

integer function CHN_CUT(section, dir, cut_num)
integer section, dir, cut_num)

Error return value: Greatest representable negative integer

IN section handle to section data structure
IN dir coordinate direction
IN cut_num sequence number of cut

3.3 Decompositions

The Charon decomposition data structure is derived from the section data structure. It is used

to store information on the ownership of individual cells defined by the section. All functions that

create, manipulate or destroy decompositions are local and collective. Query functions are local.
The decomposition data structure is initialized by CHN_Create_decomposition.

int CHN_Create_decomposition(int *decomposition, int section)
CHN_CREATE_DECOMPOSITION(decomposition, section, ierr)
integer decomposition, section, ierr

OUT decomposition handle to decomposition data structure
IN section handle to section data structure

Ownership of a cell is defined as the sequence number (MPI rank within the communicator)
of the processor that is associated with that cell. With some exceptions, elements of distributed
variables corresponding to a cell owned by processor p can only be changed by that processor. We
note that several different decompositions can be derived from the same section. For example, we
may call CHN_Set_unipartition_cuts to define a section whose cuts demarcate 18 disjoint cells
if the communicator contains 18 processors. Each of these cells may subsequently be assigned to
a different processor, but they may also all be assigned, for example, to the same processor. Cell
ownership is defined by CHN_Set_cell_owner. It takes as an argument the sequence number of
a cell. This sequence number can be obtained from the vector of indices of the cell within the
decomposition, through a call to the query function CHN_Cell_index (see page 28).

int CHN_Set_cell_owner(int decomposition, int rank, int c)
CHN_SET_CELL_OWNER (decomposition, rank, c, ierr)
integer decomposition, rank, c, ierr

INOUT decomposition handle to decomposition data structure
IN rank rank of processor in communicator
IN c global sequence number of cell within decomposition
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A decomposition data structure is deleted, and its handle reset to zero, by the function CHN_
Delete_decomposition. A decomposition should not be deleted or modified if other Charon
variables derived from it are still in use.

int CHN_Delete_decomposition(int *decomposition)
CHN_DELETE_DECOMPOSITION(decomposition, ierr)
integer decomposition, ierr

INOUT decomposition handle to decomposition data structure

3.3.1 Predefined decompositions

Completely arbitrary decompositions can be defined using CHN_Set_cell_owner, but most useful
decompositions are not arbitrary. Several special decompositions are predefined, namely the solo-,
uni-, and multi-partitions. These are constructed as follows.

CHN_Set_solopartition_owners assigns all cells to the same root processor, designated by
the programmer. Note that this function can take as input sections of any kind, not just those
created by CHN_Set_solopartition_cuts.

CH_set_unipartition_owners assigns each cell to a different processor. Numbering is in
lexicographical order of cell indices, meaning that in a section with ¢y cells in the first coordi-
nate direction, the cell with indices (4,0,0,...,0) is assigned to processor i, that with indices
(1,7,0,...,0) to processor ¢y + j, etc. A cell index is determined by the cuts that demarcate it.
Cell (i,7,k,1) lies between the cuts i — 1 and ¢, cuts j — 1 and j, cuts £ — 1 and k, and cuts
[ — 1 and [ in the first, second, third, and fourth coordinate direction, respectively. A cut with
index —1 is understood to signify the lower boundary of the grid, although this is not actually
part of the section. Similarly, cut ¢y in the example above is not actually part of the section,
but corresponds to the upper boundary of the grid. The easiest way of composing a section
that can serve as a basis for a uni-partition decomposition is through invocation of function
CHN_Set_unipartition_cuts, although any section that defines as many cells as processors is
appropriate.

CHN_Set_multipartition_owners assigns to every processor multiple cells in a regular
pattern that has the following remarkable property. Each ‘hyperslice’ of cells (collection of cells
between two cuts in n-dimensional space) in every coordinate direction contains exactly one cell
of each processor. Such an arrangement is constructed fairly easily, provided the number of
processors P can be written as Py, where P, is an integer (see Section 3.2). The section must
contain exactly Py — 1 cuts in all coordinate directions, which creates P, hyperslices in every
coordinate direction, containing Py~ " cells each.

The easiest way of composing a section that can serve as a basis for a multi-partition de-
composition is through invocation of function CHN_Set_multipartition_cuts, although any
section that defines the correct pattern of cuts is appropriate. Each cell in the hyperslice whose
last cell index is 0 is assigned to a different processor. Since there are Pg“l processors in the
communicator, this means that each processor receives exactly one cell in that hyperslice. Assign-
ment of ownership within the hyperslice follows the pattern of CHN_Set_unipartition_owners.
Ownership of cell (ig, 41, - - ., in_2, in_1)—indicated here with function O—in the hyperslice whose
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last index is i,—1 (i,—1 > 0), relates to that in the first slice as follows:

O(i()? il, sy in727 2.nfl) = 0((7/0 + Zlnfl) mod PO,
(11 + in—1) mod Py,
(42 + ip_1) mod Py,
0).
In other words, after the cells in the first hyperslice have been assigned to processors, ownership

within each subsequent slice is determined by (cyclically) shifting the ownership pattern of the
preceding slice. A 3D multi-partition decomposition for 16 processors is depicted in Figure 3.3.

3_~7_~11_~15 dir=0
2 _—6_—10 —14
1_~5_—9_—13 -
0 4 8 _—12 dir=1
4_—8 _~12 -0
7 _—~11_—~15_~ 3
6 10 —14_— 2
5_—9_—13_— 1

Figure 3.3: Three-dimensional multi-parition decomposition for 16 processors (exploded view);
processor ownership is indicated within cells

There are many decompositions conceivable that share with the predefined Charon multi-

partition the property that each hyperslice contain exactly one cell owned by each processor. The
Charon decomposition is special in three respects. First, there is no decomposition with this
property that has fewer cuts. Second, the same neighbor relation holds for all cells owned by
a certain processor. For example, as can be seen in Figure 3.3, each cell owned by processor
two is adjacent to one owned by processor six in the positive second coordinate direction. This
property is important when transferring data in bulk among all cells in the decomposition (copy_
faces_all; Section 6.1.1). Third, and least importantly, in a hypercube architecture the Charon
multi-partition minimizes the maximum number of hops (network routers to be traversed) for
nearest-neighbor communication [6].
Tip: If it is possible to use one of the predefined Charon decompositions, it is always advisable
to do so. Not only is it more convenient and less error-prone than assigning processor ownership
by hand, it is also more efficient. Predefined decompositions are marked by Charon, and their
special properties are exploited to optimize communications.

Figure 3.4 shows an example of a single section leading to three different, predefined decom-
positions. For the solo-partition processor three has been designated by the user as the root
processor.
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Figure 3.4: Section used to create three different decompositions

int CHN_Set_solopartition_owners(int decomposition, int root)
CHN_SET_SOLOPARTITION_OWNERS (decomposition, root, ierr)

integer decomposition, root, ierr

INOUT decomposition handle to decomposition data structure
IN root rank of processor owning all cells

int CHN_Set_unipartition_owners(int decomposition)
CHN_SET_UNIPARTITION_OWNERS(decomposition, ierr)
integer decomposition, ierr

INOUT decomposition handle to decomposition data structure

int CHN_Set_multipartition_owners(int decomposition)
CHN_SET_SOLOPARTITION_OWNERS(decomposition, ierr)
integer decomposition, ierr

INOUT decomposition handle to decomposition data structure

3.3.2 Decomposition query functions

27

The functions CHN_Section, CHN_Num_cells, CHN_Total_num_cells and CHN_Total_num_
owned_cells return a handle to the section on which the decomposition is based, the number
of cells in the decomposition in a certain coordinate direction, the total number of cells in the
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decomposition, and the total number of cells in the decomposition owned by the calling processor,
respectively. If not all cells have been assigned proper ownership yet, some of the query functions
will return invalid values.

int CHN_Section(int decomposition)

integer function CHN_SECTION(decomposition)
integer decomposition

Error return value: —1

IN decomposition handle to decomposition data structure

int CHN_Num_cells(int decomposition, int dir)
integer function CHN_NUM_CELLS(decomposition, dir)
integer decomposition

Error return value: —1
IN decomposition handle to decomposition data structure
IN dir coordinate direction

int CHN_Total_num cells(int decomposition)

integer function CHN_TOTAL_NUM_CELLS(decomposition)
integer decomposition

Error return value: —1

IN decomposition handle to decomposition data structure

int CHN_Total_num_owned_cells(int decomposition)

integer function CHN_TOTAL_NUM_OWNED_CELLS(decomposition)
integer decomposition

Error return value: —1

IN decomposition handle to decomposition data structure

Many Charon functions take as an input the sequence number of a cell. This number
can be obtained from the coordinates of the cell within the decomposition, using CHN_Cell_
index. For example, the coordinates of the cell owned by processor eight in in the uni-partition
decomposition in Figure 3.4 are: (0,2). Hence, the cell index is returned by: CHN_Cell_
index(decomposition, 0,2). Redundant additional coordinates are ignored by the query
function. In ISO C the stdarg facility is used to implement the variable-length argument list. In
Fortran an ad hoc solution is used that works with most modern compilers.

int CHN_Cell_index(int decomposition, ...)

integer function CHN_CELL_INDEX(int decomposition, index0O, index1l, ...)
integer index0O, index1,

Error return value: —1

IN decomposition handle to decomposition data structure

IN index0 first cell coordinate

IN index1 second cell coordinate

IN cee subsequent cell coordinates
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Usually, each processor owns only a fraction of the total number of cells in the decomposition.
The P,,, cells owned by a certain processor are numbered locally as 0 through P,,, — 1. Trans-
lation between local (within processor) and global (within overall decomposition) cell sequence
number is accomplished by the following two functions. If a local number is requested of a cell
not owned by the calling processor, the value —1 is returned.

int CHN_Own_to_global_cell_index(int decomposition, int c)
integer function CHN_OWN_TO_GLOBAL_CELL_INDEX(decomposition, c)
integer decomposition, ¢

Error return value: —1
IN decomposition handle to decomposition data structure
IN c local sequence number of cell within processor

int CHN_Global_to_own_cell_index(int decomposition, int c)

integer function CHN_GLOBAL_TO_OWN_CELL_INDEX(decomposition, c)
integer decomposition, ¢

Error return value: —1

IN decomposition handle to decomposition data structure
IN c global sequence number of cell within decomposition

Once the global cell number is known, the user can ask to know which processor owns the
cell, and, for a certain coordinate direction, what is the coordinate value of the cell within the
decomposition, what is the size of the cell (number of grid points), what is its starting grid point
index, and what its ending grid point index, respectively.

int CHN_Cell_owner(int decomposition, int c)
integer function CHN_CELL_OWNER(decomposition, c)
Error return value: —1

IN decomposition handle to decomposition data structure
IN c global sequence number of cell within decomposition

int CHN_Cell_coordinate(int decomposition, int dir, int c)

integer function CHN_CELL_COORDINATE(decomposition, dir, c)
integer decomposition, dir, c

Error return value: —1

int CHN_Cell_size(int decomposition, int dir, int c)

integer function CHN_CELL_SIZE(decomposition, dir, c)
integer decomposition, dir, c

Error return value: —1

int CHN_Cell_start_index(int decomposition, int dir, int c)

integer function CHN_CELL_START_INDEX(decomposition, dir, c)
integer decomposition, dir, ¢

Error return value: Greatest representable positive integer
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int CHN_Cell_end_index(int decomposition, int dir, int c)

integer function CHN_CELL_END_INDEX(decomposition, dir, c)
integer decomposition, dir, c

Error return value: Greatest representable negative integer

IN decomposition handle to decomposition data structure
IN dir coordinate direction
IN c global sequence number of cell within decomposition

Finally, we may also inquire which processor (rank) owns a certain point in the grid. Again,
this requires a number of arguments that depends on the dimensionality of the grid.

int CHN_Point_owner(int decomposition, ...)
integer function CHN_POINT_OWNER(decomposition, indexO, indexl, ...)
integer index0O, index1,

Error return value: —1

IN decomposition handle to decomposition data structure
IN index0 first grid point index

IN index1 second grid point index

IN .. subsequent grid point indices

3.4 Distributions

Once a decomposition is formed, a distributed variable (distribution) of a certain data type
can be associated with it. In the current release the following elementary MPI data types are
allowed: MPI_REAL, MPI_DOUBLE_PRECISION, MPI_COMPLEX, MPI_INTEGER, MPI_CHARACTER
(corresponding to Fortran data types), MPI_FLOAT, MPI_DOUBLE, MPI_INT, and MPI_CHAR (cor-
responding to C data types).

The user also specifies the tensor rank (number of tensor indices) of the variable, plus for
each tensor index the number of components. For example, setting rank equal to two, and the
first and second tensor index sizes equal to two and three, respectively, defines a (2 x 3) matrix
at each point of the grid. A rank equal to zero signifies a scalar field variable.

To accommodate stencil operations the user specifies a nonnegative number of ghost_points
that form a border of overlap points (communication buffer) around each cell (see Figure 3.5 on
page 32).

The user also supplies the start_address, which refers to a range of memory locations
reserved for storage of elements of type data_type. In Fortran 77, the starting address is often
the beginning of a user declared array. In C it can be the same, but the null pointer can be used
as a placeholder. Space can later be (re)assigned to the distributed variable through CHN_Set_
start_address. In all cases it is user allocated space that is reserved.

int CHN_Create_distribution(int *distribution, int decomposition,
MPI_Datatype data_type, void *start_address,
int nghost, int rank, ...)
CHN_CREATE_DISTRIBUTION(distribution, decomposition, data_type, start_address,
nghost, rank, sizeO, sizel, ..., ierr)
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integer distribution, decomposition, data_type, nghost, rank, sizeO, sizel,
., lerr
<type> start_address(*)

OUT distribution handle to distribution data structure

IN decomposition handle to decomposition data structure
IN data_type elementary MPI data type

IN start_address start in memory of local data storage
IN nghost thickness of border of ghost points

IN rank rank of tensor at each grid point

IN size0 extent of first tensor index

IN sizel extent of second tensor index

IN cee extent of subsequent tensor indices

int CHN_Set_start_address(int distribution, void *start_address)
CHN_SET_START_ADDRESS(distribution, start_address)

integer distribution

<type> start_address(*)

INOUT distribution handle to distribution data structure
IN start_address start in memory of local data storage

The distribution variable is destroyed, and its handle reset to zero, by the function CHN_
Delete_distribution.

int CHN_Delete_distribution(int *distribution)
CHN_DELETE_DISTRIBUTION(distribution, ierr)
integer distribution, ierr

INOUT distribution handle to distribution data structure

The distribution data structure simply provides a structuring interpretation of space pointed
to by the user. This makes it possible to operate on distributed data in any way the programmer
deems convenient, through Charon functions, through plain Fortran or C, or—most often—both.

By default, all cells take up an equal amount of space. The layout is consistent with a storage
declaration that allocates to all cells subarrays of identical dimensions. This makes it easy in
both C and Fortran to declare a distributed variable of rank r on a grid of dimension n as an
(n + r + 1)-dimensional array, where one dimension is of the size of the number of cells owned
by each processor.

As an example we show the data layout in memory of a two-dimensional, scalar distributed
variable (rank = 0) on the grid corresponding to that of Figure 3.1 on page 21, with a layer
of ghost points of unit thickness!. Assume that the two cells whose grid points are indicated
with solid disks (e) in Figure 3.5, are owned by the processor whose storage pattern we wish to
examine. The lower left cell has local index zero, and the upper right cell has /ocal index one.
Ghost points for these cells are marked with open disks (o). The largest cell in the decomposition
has dimensions (6 x 5), and this determines the default size of the subarrays associated with
each cell. Since all cell subarrays, including that for the largest cell, need to accommodate the

THenceforth, we speak of a 'distribution with d ghost points’ if the thickness of its layer of ghost points is d.
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Figure 3.5: Data layout for sample scalar two-dimensional distributed variable

ghost points, the uniform subarray dimensions must be (8 x 7), even though less space suffices,
in principle, for the smaller cells.

The continuous, snaking line in Figure 3.5 suggest how the linear address space in local
memory can be viewed as a concatenation of two-dimensional subarrays, each corresponding to
the memory required to store the data for one cell plus its ghost point values. This is the memory
model used by Charon. Notice that the first coordinate in the grid corresponds to the fastest
changing index in memory. The offset that determines where the second subarray starts relative to
the beginning of the first, is computed by Charon, and can be obtained through a query function
(see section 3.4.1).

The defaults for Charon memory use can be changed in several ways. The easiest is through
the function CHN_Compact_distribution, which stipulates that only the minimum amount of
space required for storing the data relating to the distributed variable should be used. Hence,
dimensions of subarrays used for storing cell data will generally no longer be uniform across
processors and cells. As a consequence, offsets for subarrays will also no longer be uniform, and
must be computed by the user, or obtained through query functions.

int CHN_Compact_distribution(int distribution)
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CHN_COMPACT_DISTRIBUTION(distribution, ierr)
integer distribution, ierr

INOUT distribution handle to distribution data structure

More control over memory usage is got by specifying explicitly where each cell ¢ (where
0 < ¢ < CHN_Total_num_owned_cells) starts in memory, relative to the global starting address
(CHN_Set_cell_array_offset), and what the spatial array dimensions are related to each cell
(CHN_Set_cell_array_size). All offsets and sizes are in units of the basic data type of the
distribution. It is legal to specify cell offsets that would let the data for different cells on the same
processor overlap, or perhaps even completely coincide (useful for work arrays). However, the
individual subarray dimensions cannot be made any smaller than is necessary to span the entire
cell plus ghost points; only positive array padding is allowed. Whenever a subarray dimension is
changed, the difference in the total size occupied by cell subarray is computed, and the subarrays
following it in memory are shifted by that amount.

int CHN_Set_cell_array_offset(int distribution, int offset, int c)
CHN_SET_CELL_ARRAY_OFFSET(distribution, offset, c, ierr)
integer distribution, offset, c, ierr

INOUT distribution handle to distribution data structure
IN offset relative starting address of call subarray
IN c local sequence number of cell within processor

int CHN_Set_cell_array_size(int distribution, int dir, int size,
int c)
CHN_SET_CELL_ARRAY_SIZE(distribution, dir, size, c, ierr)
integer distribution, dir, size, c, ierr

INOUT distribution handle to distribution data structure

IN dir coordinate direction
IN size array size of cell subarray (includes ghost points)
IN c local sequence number of cell within processor

When the tensor rank of the distribution is nonzero, the user may specify if the tensor in-
dices are the fastest varying components in memory (CHN_Set_tensor_indices_first; the
default), or if it is the spatial coordinates (CHN_Set_tensor_indices_last). For example,
a user may specify in Fortran that an array of shear stress coefficients should be dimensioned
var(3,3,nx,ny,nz) on a three-dimensional grid, in which case the tensor rank indices are
grouped in clusters of nine adjacent memory locations; they come first. Moreover, the tensor
indices start with index one, which is specified using CHN_Set_tensor_start_index. Alterna-
tively, the programmer may want to write the vector of physical quantities density, x-momentum,
y-momentum, and energy on a two-dimensional grid as var (nx,ny,4), in which case all densities
for a given cell are in adjacent memory locations, followed by all x-momenta, etc.; the tensor rank
indices come last.

Often the large majority of arrays in an application are of one type of tensor rank index
ordering and numbering. In this case it is convenient to use the “all” variations of the functions
specifying the tensor index position. Their settings can be overridden for individual distributions.
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“

It is important to recognize that the “all” variations influence the content of only those Charon
variables that are defined subsequently.

As will be discussed in Section 6.3, subsets of tensors components may be identified and
selected for manipulation. These subsets, or masks, are created, modified, and queried by spe-
cialized functions. However, there is an overlap between distribution and mask manipulation
functions in the area of tensor component specifications. Hence, two of the functions defined
below (CHN_Set_tensor_start_index and CHN_Set_all_tensor_start_indices) can also
be applied to tensor masks. In fact, the latter is implicitly active for all subsequent definitions of
distributions and tensor masks alike.

int CHN_Set_tensor_start_index(int dist_or_mask, int index)
CHN_SET_TENSOR_START_INDEX(dist_or_mask, index, ierr)
integer dist_or_mask, index, ierr

INOUT dist_or_mask handle to distribution or tensor mask data structure
IN index starting value for tensor rank indices

int CHN_Set_tensor_indices_first(int distribution)
CHN_SET_TENSOR_INDICES_FIRST(distribution, ierr)
integer distribution, ierr

int CHN_Set_tensor_indices_last(int distribution)
CHN_SET_TENSOR_INDICES_LAST(distribution, ierr)
integer distribution, ierr

INOUT distribution handle to distribution data structure

int CHN_Set_all_tensor_start_indices(int index)
CHN_SET_ALL_TENSOR_START_INDICES(index, ierr)
integer index, ierr

IN index starting value for tensor rank indices

int CHN_Set_all_tensor_indices_first(void)
CHN_SET_ALL_TENSOR_INDICES_FIRST(ierr)
integer ierr

int CHN_Set_all_tensor_indices_last(void)
CHN_SET_ALL_TENSOR_INDICES_LAST(ierr)
integer ierr

Certain specialized operations on the indices, such as overindexing for vector computing, and
index reduction of higher-dimensional variables, are described in Chapter 9.

All distribution creation, manipulation, and destruction operations are local and collective,
which means that all processors in the corresponding communicator must call these routines with
the same parameters (except those that associate storage space on individual processors).
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3.4.1 Distribution query functions

The functions CHN_Decomposition, CHN_Datatype, CHN_Storage_space, CHN_Num_ghost_
points, CHN_Tensor_rank, CHN_Tensor_start_index, and CHN_Tensor_size return for a
given distribution: the decomposition on which it is based, the elementary data type, the total
amount of memory (in units of the elementary data type) required to store the data for the
distributed variable, the number of ghost points surrounding each cell, the tensor rank, the
starting index of the tensor components, and—for a a particular index of the rank—the number
of components, respectively. The last three functions can also be invoked to query so-called
tensor masks (Section 6.3.1). The function CHN_Start_address returns, in C, a pointer to
the actual address where the storage space associated with the data of the distributed variable
starts. In Fortran 77, where pointers are not possible return values of functions, the result is cast
to ADDRESSTYPE—often INTEGER—that is the same size as a C void pointer (See Section
1.6.2). The function CHN_Datatype does not have an obviously invalid return value to be used
in case of an incorrect input parameter. We opt to return the MPI data type MPI_BYTE, which
cannot be used as a data type of a distributed variable in Charon.

int CHN_Decomposition(int distribution)

integer function CHN_DECOMPOSITION(distribution)
integer distribution

Error return value: —1

int CHN_Storage_space(int distribution)

integer function CHN_STORAGE_SPACE(distribution)
integer distribution

Error return value: —1

int CHN_Num_ghost_points(int distribution)

integer function CHN_NUM_GHOST_POINTS(distribution)
integer distribution

Error return value: —1

void* CHN_Start_address(int distribution)

ADDRESSTYPE function CHN_START_ADDRESS(distribution)
integer distribution

Error return value: 0

MPI_Datatype CHN_Datatype(int distribution)

integer function CHN_DATATYPE(distribution)
integer distribution

Error return value: MPI_BYTE (not useable in Charon)

int CHN_Tensor_rank(int dist_or_mask)

integer function CHN_TENSOR_RANK(dist_or_mask)
integer dist_or_mask

Error return value: —1
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int CHN_Tensor_start_index(int dist_or_mask)

integer function CHN_TENSOR_START_INDEX(dist_or_mask)
integer dist_or_mask

Error return value: greatest representable positive integer

IN distribution handle to distribution data structure
IN dist_or_mask handle to distribution or tensor mask data structure

int CHN_Tensor_size(int dist_or_mask, int tensor_index)

integer function CHN_TENSOR_SIZE(dist_or_mask, tensor_index)
integer dist_or_mask, tensor_index

Error return value: —1

IN dist_or_mask handle to distribution or tensor mask data structure
IN tensor_index  sequence number of tensor index

To gain access to and obtain proper dimensioning parameters for the subarrays used to store
the data associated with the distributed variable, we can use the functions CHN_Cell_array_
offset and CHN_Cell_array_size. These determine the offset of the cell data from the start
address of the distributed variable, and the dimensions of the cell data subarray in a particular
coordinate direction, respectively.

int CHN_Cell_array_offset(int distribution, int c)

integer function CHN_CELL_ARRAY_OFFSET(distribution, c)
integer distribution, c

Error return value: Greatest representable negative integer

IN distribution handle to distribution data structure
IN c local sequence number of cell within processor

int CHN_Cell_array_size(int distribution, int dir, int c)

integer function CHN_CELL_ARRAY_SIZE(distribution, dir, c)
integer distribution, dir, c

Error return value: —1

IN distribution handle to distribution data structure
IN dir coordinate direction
IN c local sequence number of cell within processor

To find out what the default starting value is for all tensor rank indices for all distributions,
use the following.

int CHN_All_tensor_start_indices(void)
integer function CHN_all_tensor_start_indices()
Error return value: none

Probe functions that check whether tensor rank indices are the fastest (first) varying compo-
nents in memory of the distributed variable return 1 when true, 0 when false. Similarly defined
functions test whether tensor rank indices are the slowest (last) varying components in memory
of the distributed variable.
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int CHN_Tensor_indices_first(int distribution)

integer function CHN_TENSOR_INDICES_FIRST(distribution)
integer distribution

Error return value: —1

int CHN_Tensor_indices_last(int distribution)

integer function CHN_TENSOR_INDICES_LAST(distribution)
integer distribution

Error return value: —1

IN distribution handle to distribution data structure

int CHN_All_tensor_indices_first(void)
integer function CHN_ALL_TENSOR_RANKS_FIRST()
Error return value: none

int CHN_All_tensor_indices_last(void)
integer function CHN_ALL_TENSOR_INDICES_LAST()
Error return value: none

3.4.2 Local storage details

Storage for the distributed variable shown in Figure 3.5 on page 32 can be suitably dimensioned
in Fortran through

dimension var(8,7,2)
or in C through
<type> var[2][7][8];

where <type> signifies the appropriate data type. Thus, if the grid point starting indices for cell
c in coordinate direction dir are given by start(dir,c) (this index array can be filled using
the query function CHN_Cell_start_index), then the data item of Fortran array var(i,j,c)
corresponds to grid point (i+start(0,c)-1,j+start(1,c)-1).

In general, if an n-dimensional scalar distribution has nghost ghost points and if its storage
space has been dimensioned in Fortran through

dimension var(maxy;, max;, ..., max, 1)
or in C through
<type> var[max, 1]...[max;] [maxg];

with max; being 2*xnghost plus the maximum cell size in coordinate direction i, then “var(ip+1,
i+1,...,i, 3+1,c+1)" (Fortran) and “var[c] [i, ;]...[i1]1[ip]" (C) both correspond to
the value of the distributed variable at grid point (ij+start(0,c)-nghost,i;+start(1,c)
-nghost, ...,i, j+start(n-1,c)-nghost). Here the array start(dir,c) has the same
meaning as above.

An important consequence of this indexing scheme is that if the decomposition contains just a
single cell without ghost points, and if the storage space has been dimensioned in Fortran through
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dimension var(start(0,0) :start(0,0) +maxg,
start(1,0) :start(1,0) +maxq,

*9

start(n-1,0) :start(n-1,0)+max,_1)

then var(ig,iy,...,in_1,c) corresponds to the value of the distributed array at grid point
(i9,11,..-,1in-1,¢). In other words, the same indices can be used for accessing values of
distributed variables through Charon, or through the local array. In C the default array starting
index cannot be changed from zero, but usually macros are employed to mimic indexing in multi-
dimensional arrays of variable size, in which case indexing is as flexible as in Fortran.

In legacy codes this fact can be exploited by ‘reverse engineering’ of the Charon grid. If a scalar
variable relating to a discretization grid has been dimensioned var (nx,ny,nz) in Fortran, then we
can define a Charon grid of the same dimensions and set its starting indices to one. Subsequently,
we create a solo-partition section and, based on that, a solo-partition decomposition. Finally, we
associate with the decomposition a scalar distribution without ghost points. This establishes the
identity relation between Charon and local array indexing. Consequently, as will be demonstrated
in Chapter 4, manipulations and assignments involving array var can switch transparently between
Charon and the local array. The convenience of this mechanism is that it allows partial conversion
of a code using Charon constructs, while leaving the rest of the code entirely unchanged.

3.5 Distribution examples

We give some examples, in C and in Fortran, of how Charon can be used to design distributed
implementations of data structures for practical serial scientific computing programs on structured
grids. As a notational convenience, the names of the distributions in the examples are derived
from those of the data arrays they represent by appending an underscore (‘_") character to the
array name.

3.5.1 Staggered grids

Staggered grids are a common and useful instrument in fluid flow computations. They allow
the numerical analyst to specify certain quantities at some locus of the grid (for example, all
physical quantities at the center of cells), and others at other loci (for example, grid metrics at
cell vertices). Figure 3.6 gives an example of a two-dimensional (2D) staggered grid. Physical
quantities, indicated by solid disks (e), are stored at cell centers, and metric quantities, indicated
by diamonds (¢), are stored at the cell vertices.

The staggered computational grid embodies two sets of array indices. One to select physical
components, and one to select metrics components. This is reflected in the definition of two
Charon grids that differ in their grid sizes by one unit in each coordinate direction. Because there
is no one-to-one correspondence between the points in both Charon grids, we also cannot place
cuts such that there is a pointwise correspondence between the cells of their Cartesian sections.
However, we do insist on consistent cuts, meaning that if one cell of the metrics section contains
the metrics coefficients for the left strip of points in the physics section’s cell, then all others
should as well. This is accomplished by copying the cuts of the metrics section to that of the
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Figure 3.6: Staggered computational grid uses two Charon grids

physics section, with a constant shift. The fragment of C code below implements this method
for a multi-partition decomposition, but the technique applies to any valid decomposition.

int m_grid, m_section, m_decomposition, ph_grid, ph_section,
ph_decomposition, cut, dir, npoints[2];

for (dir=0; dir<2; dir++) scanf("%d",&npoints[dir]);

CHN_Create_grid(&m_grid ,MPI_COMM_WORLD,2);

CHN_Create_grid(&ph_grid,MPI_COMM_WORLD,2) ;

for (dir=0; dir<2; dir++)
CHN_Set_grid_size(m_grid,dir,npoints[dir]);
CHN_Set_grid_size(ph_grid,dir,npoints[dir]-1);

CHN_Create_section(&m_section,m_grid);
CHN_Create_section(&ph_section,ph_grid);
CHN_Set_multipartition_cuts(m_section);
for (dir=0; dir<2; dir++)
CHN_Set_num_cuts(ph_section,dir,CHN_Num_cuts(m_section,dir));
/* copy cuts between sections, with constant shift 0 */
for (cut=0; cut<CHN_Num_cuts(ph_section,dir); cut++)
CHN_Set_cut (ph_section,dir,cut,CHN_Cut(m_section,dir,cut));
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CHN_Create_decomposition(&m_decomposition,m_section);
CHN_Create_decomposition(&ph_decomposition,ph_section);
CHN_Set_multipartition_owners(m_decomposition);
CHN_Set_multipartition_owners(ph_decomposition);

Notice that although the cuts were placed ‘by hand’ for the physics section, we can still use
the CHN_Set_multipartition_owners for both derived decompositions, and be assured that
corresponding cells have the same owners. That is because the logical layout of cells is identical,
even though the exact cell sizes in the decompositions may differ.

3.5.2 Multi-dimensional Fast Fourier Transform

The multi-dimensional Fast Fourier Transform (FFT) is a popular technique for obtaining high-
accuracy difference schemes on structured grids. It is a global method in which a (vector of)
coefficients at each grid point is computed from data at all other grid points. All coefficients
can be computed independently, in principle, which makes FFT's naturally data parallel, but
expensive. On a grid with N points the amount of work is proportional to N? if all coefficients
are computed separately. Moreover, on a distributed computer a vast amount of data needs to
flow between processors.

Multi-dimensional FFT's can be sped up by breaking them into sequences of one-dimensional
(1D) FFT's, one for each grid line. Within the grid line points can share many common subex-
pressions, rendering the final method as efficient as O(NN log V). Unfortunately, sharing subex-
pressions means that there is still a large amount of data traffic between all points on a grid line,
which argues against dividing grid lines among processors. Since multi-dimensional FFT's require
1D FFT's in all coordinate directions of the grid, it would appear that no domain decomposition
can be used.

More precisely, not a single domain decomposition can be constructed that is efficient for
1D FFT's in all coordinate directions. But the grid may be divided in different ways, depending
on the orientation of the 1D grid lines, and data may be ‘transposed’ (CHN_Redistribute; see
Section 6.1.2) between these different distributions. Figure 3.7a shows a schematic of an example
of two different slicewise decompositions of the grid that together are sufficient to accommodate
3D FFT's, provided the grid is large enough. If the number of processors exceeds the number of
grid points on all sides of the grid, a higher-dimensional decomposition must be used. The three
pencilwise decompositions shown in Figure 3.7b offer more parallelism.

Consider now the sample fragment of Fortran code below, used to set up the data structures
for a 3D FFT problem. The dimensions of the discretization grid are read from standard input,
and are stored in the array npoints. We will assume that they are all powers of two, so that
the 1D FFT's can be computed efficiently. Nmax is sufficiently large to accommodate any of the
expected inputs. There is one Fourier coefficient per grid point, represented by the scalar array
coef. Althrough we create three different distributions to represent this array, we reserve just
two times its size, because we expect never to need more than two active distributions at the
same time. In the next release of Charon in situ redistributions will be accommodated, in which
case no additional space needs to be claimed. We assume that no ghost points are needed (if
there were, more space should be allocated).

integer grid, section(3), decomposition(3), coef_(3), npoints(3), dir, ierr
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real coef (nmax,nmax,nmax,2)

create and initialize the grid
call CHN_CREATE_GRID(grid,MPI_COMM_WORLD,3,ierr)
read *, (npoints(dir),dir=1,3)
do dir =1, 3
call CHN_SET_GRID_START_INDEX(grid,dir-1,1,ierr)
call CHN_SET_GRID_SIZE(grid,dir-1,npoints(dir),ierr)
end do

create three different sections, decompositions and distributions
for different pencil distributions
do dir =1, 3
call CHN_CREATE_SECTION(section(dir),grid,ierr)
call CHN_EXCLUDE_PARTITION_DIRECTION(section(dir),dir-1,ierr)
call CHN_SET_UNIPARTITION_CUTS(section(dir) ,CHN_EVEN_CUTS,ierr)

call CHN_CREATE_DECOMPOSITION(decomposition(dir),section(dir),ierr)
call CHN_SET_UNIPARTITION_OWNERS(decomposition(dir) ,ierr)

call CHN_CREATE_DISTRIBUTION(coef_(dir) ,decomposition(dir),MPI_REAL,
coef(1,1,1,1),0,0,ierr)
end do

reset the starting addresses of the second and third distributions.
the third equals that of the first
call CHN_SET_START_ADDRESS (coef_(2),coef(1,1,1,2),ierr)

41
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call CHN_SET_START_ADDRESS(coef_(3),coef(1,1,1,1),ierr)

Observe that the number of processors P does not enter (this part of) the program. The
shapes of the pencils will be computed automatically to minimize their surface areas. If the
program is run on one processor, the total data will still fit in in the space allocated to array
coef. If the number of processors is a square, each divided coordinate direction receives the same
number of cuts, and Charon’s deterministic cutting algorithm also guarantees that the cuts in the
same coordinate direction on different sections coincide exactly in space. This is a performance
benefit for the CHN_Redistribute function, because relatively few communications are required
to establish a data transposition among the processors. If the number of processors is not a
square, there is a possibility of a mismatch of the distributions.

For example, assume that P = 12(= 3 x 4). In that case coef_(1) will receive 2 cuts in
the second and 3 in the third coordinate direction. Coef_(2) will receive 2 cuts in the first and
3 in the third coordinate direction, and coef_3 will receive 2 cuts in the first and three in the
second coordinate direction. Any redistribution between coef_(1) and coef_(2) and between
coef_(2) and coef_(3) takes place efficiently, but if the user would want to redistribute between
coef_(1) and coef_(3), the thicknesses of the pencils would not be compatible. This would not
lead to program errors, but would make the redistribution less efficient. In our sample program
this situation is not likely to occur, because we have already ruled out redistributions between
coef_(1) and coef_(3) by allowing their storage spaces to overlap.

3.5.3 Three-dimensional grid with two-dimensional scratch array

Many scientific computing programs that solve problems in three (or more) space dimensions
can benefit from the use of lower-dimensional scratch arrays. They save memory, and can also
improve cache performance due to improved data locality. Charon readily supports the use of
grids of different dimensionality within the same application. But a complication arises if the
programmer insists that a certain element of a scratch array be owned by the same processor that
owns the corresponding point in the higher-dimensioned grid. Concretely, the problem is how to
associate an array element with just two indices (e.g. var(i,j)) to a grid point that has three
indices (and a unique owner processor).

Charon provides two solutions. The first is to define a distribution based on the 3D grid, but
to ‘freeze’ one of its indices at the value that corresponds to the particular slice of the grid for
which the scratch array is used. This technique is demonstrated in Section 9.2. This method
results in the same notational convenience of fewer array indices, but actually uses the entire 3D
space to store data, and hence does not save memory nor improves cache performance. Moreover,
only a contiguous subset of indices, starting from the highest, can be frozen thusly.

The second solution requires the user to define one 2D grid and section, and possibly several
2D decompositions and distributions—but an amount of space equal to at most just one slice of
the grid. If every point of var (i, j) is owned by the same processor, regardless of the slice of the
grid, the problem essentially utilizes a pencil decomposition, and a single 2D decomposition and
distribution for the scratch array will suffice. This is indicated in Figure 3.8a, where the dropped
index from the 2D work array corresponds to the undivided axis of the grid.

If the ownership of point var(i,j) does depend on the particular slice of the grid, such
as indicated in Figure 3.8b, then it is easiest (although a little redundant) to define a separate
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Figure 3.8: Lower-dimensional scratch arrays

decomposition and distribution for each slice. This is exemplified by the Fortran code below. We
use the multi-partition decomposition for this computation, because a uni-partition would result
in a poor load balance when working on the scratch array.

integer grid3d, section3d, decomposition3d, grid2d, section2d,
$ decomposition2d (KMAX), work2d_(KMAX), npoints(3), dir, ierr
double precision work2d(WORK2DMAX)

c create and initialize the grids
read *, (npoints(dir),dir=1,3)
call CHN_CREATE_GRID(grid2d,MPI_COMM_WORLD,2,ierr)
do dir =1, 2
call CHN_SET_GRID_START_INDEX(grid2d,dir-1,1,ierr)
call CHN_SET_GRID_SIZE(grid2d,dir-1,npoints(dir),ierr)
end do

call CHN_CREATE_GRID(grid3d,MPI_COMM_WORLD,3,ierr)
do dir =1, 3
call CHN_SET_GRID_START_INDEX(grid3d,dir-1,1,ierr)
call CHN_SET_GRID_SIZE(grid3d,dir-1,npoints(dir),ierr)
end do

c create the sections, copying cuts from the 3D section to 2D
call CHN_CREATE_SECTION(section3d,grid3d,ierr)
call CHN_EXCLUDE_PARTITION_DIRECTION(section3d,0,ierr)
call CHN_SET_MULTIPARTITION_CUTS(section3d,ierr)

call CHN_CREATE_SECTION(section2d,grid2d,ierr)
call CHN_SET_NUM_CUTS(section2d,CHN_num_cuts(section3d,1),1,ierr)
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call CHN_SET_EVEN_CUTS(section2d,1,ierr)

c create the decompositions, copying ownership from 3D to 2D
call CHN_CREATE_DECOMPOSITION(decomposition3d,section3d,ierr)
call CHN_SET_MULTIPARTITION_OWNERS(section3d,ierr)

do k =1, npoints(3)
call CHN_CREATE_DECOMPOSITION(decomposition2d(k),section2d,ierr)
do strip = 1, CHN_NUM_CELLS(decomposition2d(k),1)
cell2d = CHN_CELL_INDEX(decomposition2d(k),0,strip-1)
owner3d = CHN_POINT_OWNER(decomposition3d,

$ CHN_CELL_START_INDEX (decomposition2d(k),0,cell2d),
$ CHN_CELL_START_INDEX (decomposition2d(k),1,cell2d) k)
call CHN_SET_CELL_OWNER(decomposition2d (k) ,owner3d,cell2d,ierr)
end do
end do

c create the 2D distributions; they all have the same starting address
do k =1, npoints(3)
call CHN_CREATE_DISTRIBUTION (work2d_(k) ,decomposition2d(k),

$ MPI_DOUBLE_PRECISION,work2d,0,0,ierr)
end do

We note that the way the 2D work arrays are defined in this example gives the correct result
for any 3D decomposition, not just the 3D pencil decomposition shown in Figure 3.8b.



Chapter

Distributed execution support tools

It is useful to define a distinction between distributed and parallel scientific computing. By
distributed computing we mean performing operations on a data set that resides on multiple
computers. Usually, each of these computers will contain only part of that data set, although
often there will be some overlap between the subsets. Parallel computing is the simultaneous
execution of several processes related to the same computational task. Charon’s aim is to obtain
a distributed, parallel scientific application.

The previous chapter has shown how data can be distributed. In this chapter we explain how
operations can be performed on the distributed data set. The result is a distributed program,
but not yet a parallel program. The next chapter will explain how a Charon distributed program
is gradually turned into a high-performance parallel program. The reason for this multi-step
approach is to obtain programmability. Distributing the application requires many textual changes
to the program, as we will see, but virtually all are very straightforward. No change in program
structure or logic is required when converting a nondistributed program or design to a distributed
environment. The more difficult task of parallelizing the distributed program can subsequently
be undertaken one routine, loop, or statement at a time. This makes developing and debugging
the parallel program easier than before, because at all times the programmer maintains a correct
program.

The distribution of the computational tasks hides from the user all such bookkeeping details
as domain decomposition, local and remote data, communication, etc. At this highest level of
Charon’s abstraction, computational efficiency is generally very poor, but that is not a problem.
In the parallelization phase, at the next lower level of abstraction, performance improvements are
obtained, again making use of Charon tools.

Charon does not provide automatic code conversion. All distribution and parallelization is
carried out by the user, who retains complete control over data lay-out and program flow. Hence,
the necessary code changes must be kept at a minimum. For that purpose Charon offers dis-
tributed execution support tools that simulate a single data space and a single thread of control.
Assignments and control structures are exact images of the serial program, and the resulting
code is executed by all processors; Charon simulates a single serial program, or, more accurately,
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a single replicated program counter.

We use the following rationale for the implementation. Each element of a distributed variable
is associated with a grid point, which has a unique owner processor, as was detailed in the
previous chapter. So it is most natural—and often least expensive—to employ an owner-assigns
rule (a variation of the oft-cited owner-computes rule): whenever an element of a distributed
variable occurs on a left-hand side of an assignment, the processor who owns it is responsible
for its update. Since all processors execute the same code within the same control structure, we
have to provide a mechanism to skip assignments to nonlocal memory locations; the replicated
program counter ‘pauses’ on all processors, except on the one executing the local assignment,
and ‘resumes’ collectively immediately thereafter.

4.1 Elementwise distributed execution

The implementation is as follows. Each assignment in the serial program is converted into a call
to CHN_Assign, which takes as arguments a left hand side (an address) and a right hand side (a
value). If the address does not exist on the calling processor, signified by the null value (an illegal,
nonreachable address), the assignment is effectively ignored; it is masked. Masking is provided
by the function CHN_Address, which returns an actual memory location for a local element of
a distributed variable, and null otherwise. Assignment masking alone, however, is not sufficient,
since assembly of the right hand side of the assignment may involve contributions from local as
well as (possibly several) remote memories. For this purpose the generic function CHN_Value—
specializations will be described below—is introduced. It operates on distributed variables and
always returns the proper value, regardless of which processor owns the donor point. Analogous
to the owner-assigns rule for left hand sides of assignments, we apply the owner-serves rule to
the right hand side components, meaning that the unique processor that owns a particular grid
point is responsible for producing values associated with the point upon request by CHN_Value.
No distinction is made between values returned by the function CHN_Value and values of
nondistributed variables and constants. All are rvalues (right hand side values) in C terminology.
Similarly, no distinction is made between addresses returned by the function CHN_Address, and
addresses of nondistributed variables’. Both are Ivalues (left hand side values). In a correct
program using only top-level Charon tools, rvalues always exist, whereas lvalues are defined only
if they are local. Alternatively, we may say that the highest level of abstraction of Charon only
offers (implicitly invoked) remote gets, not puts.
Syntax of global access functions:

int CHN_Assign(void *my_address, <type> my_value)
CHN_ASSIGN(my_address, my_value, ierr)

integer ierr

ADDRESSTYPE my_address

<type> my_value

INOUT my_address address of local element of distribution
IN my_value value to be assigned to local element of distribution

1But see Section 4.4 for a discussion of the application of CHN_Assign to an address that is not obtained
through CHN_Address.
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<type> CHN_<type>_value(int distribution, int sbsO, int sbsl, ...)

<type> function CHN_<type>_VALUE(distribution, sbsO, sbsl, ...)
integer distribution, sbs0, sbsli,

Error return value: largest representable value, or EOF (for characters)

IN distribution handle to distribution data structure

IN sbsO first subscript of distribution (coordinate or tensor index)
IN sbsi second subscript of distribution (coordinate or tensor index)
IN ce subsequent subscripts

void  *CHN_Address(int distribution, int sbsO, int sbsl, ...)

ADDRESSTYPE function CHN_ADDRESS(distribution, sbsO, sbsi, ...)
Error return value: 0

IN distribution handle to distribution data structure

IN sbs0 first subscript of distribution (coordinate or tensor index)
IN sbsi second subscript of distribution (coordinate or tensor index)
IN ce subsequent subscripts

<type> can be any of Int, Float, Double, Char (C) INTEGER, REAL, DOUBLE_PRECISION,
REAL8, COMPLEX, or CHARACTER (Fortran), which correspond to the MPI data types of the
distributions. Observe that in Fortran the function CHN_Address returns an address stuffed in
a variable of type ADDRESSTYPE—often INTEGER—that is the same size as a C void pointer
(See Section 1.6.2). Note also that the CHN_Assign operator is overloaded; it can take values
and addresses of any elementary types, as long as they are consistent, that is, my_value and
my_address must refer to the same type.

A subtle side effect of the overloading is that there is no way that the compiler can check
whether the value being assigned is properly typed. This is best illustrated as follows. If the
assignment “r1(i,j) = 5" is encountered and if r1 has been declared a double precision array,
then the integer 5 will automatically be promoted to a double precision number as well. However,
if the Charon wrapper “call CHN_Assign(CHN_Address(ri_,i,j),5)" is used (with ri_ the
integer handle of the distribution associated with array r1), there is not enough information to
decide what, if any, promotion should be applied to the constant 5. So the value of this simple
expression will be passed as an integer (often four bytes long) to CHN_Assign. If the latter is
expecting an eight byte double precision number, an error will occur. The solution is to force
the correct type of the rvalue, for example by using 5.0 or 5.0d0 instead of 5. We mark CHN_
Assign’'s my_address parameter as INOUT, because the contents of the address may be changed,
even though the address itself is not modified.

In C the implementation of the different types of my_value can be handled cleanly through
the stdarg facility, which does not exist in Fortran. Hence, the above definition of CHN_ASSIGN
is not formally possible in Fortran; it is simply a reflection of what the Fortran definition might
look like, if a prototype would be written for it. In reality, virtually all Charon Fortran functions
and procedures are immediate fall-throughs to C functions.

Subscripts sbs1, sbs2, ... are indices with respect to the global grid, as defined in the
Charon grid variable, or the tensor indices of the distribution. For example, if a double precision
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tensor T_ of rank two is defined on a four-dimensional grid, with the tensor indices positioned
first (the default), then CHN_Address(T_,p,q,1,j,k,1) refers to the (p,q) tensor component
at grid point (i,j,k,1). Similarly, if the tensor indices are positioned last, CHN_Double_value (T_
,1,3,k,1,p,q) refers to the same component. In general, the subscripts are placed in order of
increasing memory stride.

4.2 Blockwise distributed execution

Sometimes it is convenient to pass an element of an array variable to a procedure that operates
on multiple elements adjacent to it in memory. For example, a user may want to call a fast
assembly routine to compute the solution to a small, fixed-size matrix problem at each point.

The difficulty with this coding style is that the statements that do the actual work are in
procedures that have no knowledge of the overall partitioned grid. They operate on addresses
and neighboring memory locations that are passed through parameter lists. Moreover, it may be
impossible to modify the assembly routine. But even if we would somehow be able to change it,
the strategy of translating every assignment into a call to CHN_Assign would not work, because
no global grid coordinates are available.

The solution is to demand that such procedures execute atomically, which means that there
must be a single, known address (my_address) that acts as the start of a region of Ivalues on
the same processor. No other values may be modified within the same procedure. There may be
several contiguous regions of rvalues, whose sizes must be known at run time. They are made
available (‘served’) to the user-supplied procedure ‘subf’ through the function CHN_Mvalue,
usually under the control of the Charon function CHN_Invoke.

int CHN_Invoke(void (*subf) (), void *my_address, int nr,

void *my_valuesO, void *my_valuesl, ...)
CHN_invoke(subf, my_address, nr, my_valuesO, my_valuesl, ..., ierr)
external subf
integer nr, my_address, my_valuesO, my_valuesl, ..., ierr
IN subf user-supplied procedure
INOUT my_address start address of region of Ivalues
IN nr number of regions of rvalues
IN my_valuesO start address of first region of rvalues
IN my_valuesl start address of second region of rvalues
IN ce start address of subsequent regions of rvalues
void *CHN_Mvalue(n, distribution, sbsO, sbsi, ....)
ADDRESSTYPE function CHN_MVALUE(n, distribution, sbsO, sbsl, ....)

integer n, distribution, sbsO, sbsli,
Error return value: 0

IN n number of contiguous data elements requested

IN distribution handle to distribution data structure

IN sbs0 first subscript of distribution (coordinate or tensor index)
IN idx1 second subscript of distribution (coordinate or tensor index)

IN cee subsequent subscripts
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CHN_Invoke examines the argument my_address, which determines which processor is re-
sponsible for the execution of the user-supplied procedure subf, based on the owner-assigns rule.
All other processors skip the execution of subf, but cooperate in providing rvalues, as needed,
through communications implicitly invoked by CHN_Mvalue. Again, atomicity is assumed, i.e.
the processor that owns the first element of the distributed variable in the mvalue argument list
is also responsible for supplying subsequent elements. If the first element is local, the action of
CHN_Mvalue is nearly identical to that of CHN_Value. If remote, a communication requesting
n data elements is initiated. In either case, upon completion the function CHN_Mvalue points
to the start of a buffer region containing the requested values (address stuffed in a variable of
type ADDRESSTYPE—usually an integer—in Fortran; see Section 1.6.2). The actual number of
bytes transferred depends on the specific data type of the distributed variable. Naturally, space
must be reserved on those processors receiving remote data in buffers, and these buffers can
only be released when the programmer decides their contents are no longer needed. Section 9.5
explains how this is accomplished.

The subroutine subf is defined by the user as follows.

void subf(<type> *my_address, <type> *my_valuesy, ..., <type> *my_values,,_1);
SUBF (my_address, my_valuesg, ..., my_values,_1)
<type> my_address(*), my_valuespg(*), ..., my_valuesy,_j(*)

Neither Fortran nor C provides information about the number of actual parameters with which
a subroutine is called, so the user must indicate to CHN_Invoke the number of separate regions
of input values through the parameter nr.

CHN_Assign, CHN_Address, and CHN_Invoke are always local. CHN_Value and CHN_Mvalue
are collective and nonlocal by default. The next chapter will show how to change their default
operation mode. Such mode changes correspond to the relaxation of the owner-assigns and
owner-serves rules. The functions presented in this section are sufficient to move many serial
programs based on structured grids to a distributed environment while retaining serial logic.
They make up the bulk of Charon's top-level distributed execution support.

4.3 Serial consistency

Correctness (i.e. serial consistency) of a program utilizing only the functions CHN_Assign, CHN_
Invoke, CHN_Address, CHN_Value, and CHN_Mvalue is easily shown, even though Charon makes
no assumptions about lock-step execution or other synchronization features of the runtime system,
and does not pose any restrictions on data dependencies in the program. Each invocation of CHN_
Assign or CHN_Invoke requires the cooperation of the processors that owns referenced remote
data elements. Because all processors execute the same code, any update of such referenced
remote data occurring logically before the new values are requested must already have taken
place before the request is registered and satisfied; synchronization is performed automatically.
This is equivalent to realigning the replicated program counter.
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4.4 Detailed behavior of global access functions

A side effect of the cooperative nature of implicitly invoked communications is that they must be
issued as broadcast operations on all the processors in the communicator. A processor executing
the CHN_Value function must take active part in sending data, but cannot know the recipient
until my_address has been evaluated. Both my_address and the expression involving CHN_
Value are arguments of the CHN_Assign function, and Fortran nor C semantics prescribe a
unique evaluation order. Hence, the rvalue may be evaluated before the destination address is
known, which implies that the rvalue be available to all processors in the communicator. A
broadcast is required.

If the Ivalue is not a distributed variable—in other words, if it is a global variable—the CHN_
Address and CHN_Assign functions do not have to be used, but it is still legal to do so. In
either case, all processors in the communicator obviously need to be able to assemble the complete
right hand side, and hence need to receive all remote data. This again highlights the need for
broadcasts. Global variables are automatically self-consistent, because each processor assigns the
same value to its local copy.

One complication arises when assigning values to global variables through CHN_Assign. The
type of the value to be assigned is ordinarily inferred from the data type of the distribution in the
left hand side, that is, through a call to CHN_Address. But if the programmer simply uses (the
address of) a global variable as the left hand side, CHN_Assign cannot know how to interpret
the value of the right hand side, and may do the wrong thing. In fact, it will assume that the left
hand side is of the same type as that of the last left hand side that did appear in a CHN_Address
function. If this is not correct, the user needs to call CHN_Set_assign_data_type to specify
the proper data type explicitly. The alternative would be to implement a different assign function
for each data type.

int CHN_Set_assign_data_type(MPI_Datatype data_type)
CHN_SET_ASSIGN_DATA_TYPE(int data_type)
integer data_type

IN data_type data type implied for CHN_Assign

4.5 Distributed execution examples

Here we give a small sample of the many possibilities of using Charon to create distributed
programs. By design, the functionality of all the code fragments is independent of the type of
domain decomposition used.

45.1 Index swap

Assume we have two distibutions, T_before_ and T_after_, which differ only in their placement
of tensor rank indices (p,q). If in the serial program we would want to initialize one with the
other, we could write:

for (k=0; k<nk; k++) for (j=0; j<nj; j++) for (i=0; i<ni; i++)
for (g=0; g<nq; q++) for (p=0; p<np; p++)
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Tbefore[k] [j]1[i][q]l [p] = Tafter([ql [p] [k][j]1[i];
Using Charon, the loop headings stay the same, but the body is replaced by

CHN_Assign(CHN_Address(Tbefore_,p,q,i,j,k),
CHN_Float_value(Tafter_,i,j,k,p,q));

This code fragment shows that if a multi-dimensional array in C is actually programmed using
multiple indices—a somewhat unusual situation for practical codes—then the order in which its
indices appear in CHN_Address and CHN_Value is the reverse of that in its C declaration. This is
because Charon always lists indices in order of increasing array stride (the Fortran storage format),
while for C it is the other way around. Here we have assumed that the whole multi-dimensional
array has been allocated as a single, contiguous block of data, since this is Charon’s storage
model.

If this is not the case—that is, if the multi-dimensional C array has been allocated in stages—
then there is generally no immediate connection between the Charon memory lay-out and that
of the original serial application program, and it is impossible to construct a Charon distribution
whose data elements exactly coincide with those in the original code. This is not a problem per
se, but it requires that all assignments be replaced by calls to CHN_Assign at the same time to
avoid inconsistencies between memory models.

More often, however, elements of multi-dimensional arrays in C are referenced through one-
dimensional arrays and index macros. For example, the above serial code could also have been
written as follows, which would translate into the same Charon code as before. In this case, no
index reversal occurs.

#define Tafter(i,j,k,p,q) Tafter[(((((q)*np+(p))*nk+(k))*nj+(j))*ni+(i))]
#define Tbefore(p,q,i,j,k) Tbefore[(((((k)*nj+(j))*ni+(i))*ng+(q))*np+(p))
for (k=0; k<nk; k++) for (j=0; j<nj; j++) for (i=0; i<ni; i++)
for (q=0; q<ng; g++) for (p=0; p<np; p++)

Tafter(i,j,k,p,q) = Tbefore(p,q,i,j,k);

Because of the pluriformity and fluidity of the C memory model, as demonstrated here, we
attach the Charon memory model to the more settled Fortran model, which is used in many C
codes as well.

Finally, we note that if the only goal is to swap spatial and tensor indices of an entire
distribution, then the function CHN_Redistribute (see Section 6.1.2) would probably be more
appropriate, and significantly faster.

4.5.2 Block-tridagonal solver

In this example a set of independent, block-tridiagonal systems of linear equations is solved on
a 2D grid. There is one system for each grid line in the first coordinate direction. Here we only
show the forward elimination phase. Each of the diagonals 1ow, main, and up consists of (4x4)-
blocks. They are defined as distributions with the tensor indices positioned first, which means
the blocks are contiguous in memory. The right hand side vector r, which will be overwritten by
the solution, consists of (4 x 1)-blocks. Due to the nature of the tri-diagonal matrix solutions,
there is a recurrence of depth one in the first spatial coordinate of the distribution. The serial
code might be written as follows.
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do

do

j=1,nj
i =1, ni-1
call invert_overwrite(up(1,1,i,j),main(1,1,i,j))
call invert_overwrite(r(1,1,i,j),main(1,1,i,3))
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call multiply_add(main(1,1,i+1,3j),low(1,1,i+1,j),up(1,1,i,j))
call vmultiply_add(r(1,i+1,j),low(1,1,i+1,5),r(1,1i,3))

end do
end do

subroutine invert_overwrite(matl,mat2)

re

al

matl(4,4), mat2(4,4), temp(4,4), pivot

code that overwrites matl by mat2”-1*matl

pivot = 1.0/mat1(1,1)

return
end

subroutine multiply_add(matl,mat2,mat3)

re

al

matl(4,4), mat2(4,4), mat3(4,4)

integer n, m, k
code that overwrites matl by matl-mat2*mat3

do

do

n=1, 4
m=1, 4
do k=1, 4
matli(n,m) = matl(n,m)-mat2(n,k)*mat3(k,m)
end do

end do
end do
return
end

subroutine vmultiply_add(vecl,mat2,vec3)

re

al

matl(4,4), mat2(4,4), mat3(4,4)

integer n, k
code that overwrites vecl by vecl-mat2*vec3

do

do

n=1, 4
k=1, 4
vecl(n) = vecl(n)-mat2(n,k)*vec3(k)

end do
end do
return
end

The calling program can be translated using Charon while keeping invert_overwrite and
(v)multiply_add unchanged. It isimportant to recognize that if in the underlying Charon section
the first coordinate direction is divided, then some of the second and third invoke statements in
the loop body will be getting data from different cells, and potentially from different processors.
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This is transparent to the user. While the program text has been augmented significantly, the
program structure is completely unchanged.

do j =1, nj

do i=1, ni-1
call CHN_INVOKE(invert_overwrite,CHN_ADDRESS(up_,1,1,i,j),1,
$ CHN_MVALUE(16,main_,1,1,i,j),ierr)
call CHN_INVOKE(invert_overwrite,CHN_ADDRESS(r_,1,1,i,j),1,
$ CHN_MVALUE(16,main_,1,1,i,j),ierr)
call CHN_INVOKE(multiply_add,CHN_ADDRESS (main_,1,1,i+1,j),2,
$ CHN_MVALUE(16,low_,1,1,i+1,3j),

CHN_MVALUE(16,up_,1,1,i,j) ,ierr)
call CHN_INVOKE(vmultiply_add,CHN_ADDRESS(r_,1,i+1,j),2,
$ CHN_MVALUE(16,low_,1,1,i+1,3j),
CHN_MVALUE(4,r_,1,i,j),ierr)
end do
end do



54

DISTRIBUTED EXECUTION SUPPORT TOOLS



Chapter
5

Parallel execution support tools

Strict adherence to serial program logic makes the step from non-distributed to distributed execu-
tion easy, using Charon utilities. However, the synchronization that occurs whenever distributed
variable elements are requested through CHN_Value and CHN_Mvalue also guarantees that no
true concurrency is possible, and parallel speed-up cannot be obtained. The broadcast operations
invoked by these functions constitute the mechanism that enforces the principle of the simulated
single, replicated program counter to mimic serial program execution. Hence, this coding style
should be viewed only as a stepping stone on the way to an efficient, fully concurrent program.

This goal is reached through a succession of assertions by the programmer about the safety
of relaxing certain of Charon’s rules, and by making explicit those communications that otherwise
would be invoked implicitly. In the process, more and more of the domain decomposition is
exposed in the program. As the level of abstraction through encapsulation decreases, concurrency
and performance go up.

5.1 Supressing broadcasts

The CHN_Begin_local function is used to inform Charon that broadcasts should be suppressed
within CHN_Value and CHN_Mvalue, making their operation modes local and non-collective.
This opens the door to optimizations, since the program counters on different processors are now
independent; they are allowed to ‘drift’ with respect to each other. CHN_Begin_local is an
assertion on the part of the programmer that it is safe to ignore remote-data requests. With it
comes the responsibility to make sure that any remote data needs have already been met, and
that no arithmetic exceptions will occur.

When a request is made for elements of a distributed variable while suppressing broadcasts,
Charon will serve the correct values if they are local. But the return values are undefined if the
requested values are not local. Hence, allowing all processors to execute

call CHN_ASSIGN(CHN_ADDRESS(a_,i,j),CHN_REAL_VALUE(b_,i,j),ierr)
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indiscriminately to copy one distributed array to another identically distributed array will not result
in an error. But the slight variation

call CHN_ASSIGN(CHN_ADDRESS(a_,i,j),2.0*CHN_REAL_VALUE(b_,i,j),ierr)

may create an arithmetic exception, because CHN_REAL_VALUE(b_,1i,j) is undefined whenever
point (i,j) is not owned by the calling processor and broadcasts are suppressed, and multiplying
an undefined value by two may cause overflow. Consequently, the programmer should ordinarily
make sure that no processor ever attempts to use a remote data item.

In many cases this can be done by testing for the ownership of points, through the function
CHN_Point_owner (see Section 3.3). The above example can be safely coded as follows for any
distributions a_ and b_, provided they are based on the same decomposition (my_dcmp), in turn
based, through the Charon grid variable, on MPI communicator my_comm.

call MPI_COMM_RANK(my_comm, my_rank, ierr)

call CHN_BEGIN_LOCAL(my_comm,ierr)

do j =1, nj
do i=1, ni

if (CHN_POINT_OWNER(my_dcmp,i,j) .eq. my_rank)

$ call CHN_ASSIGN(CHN_ADDRESS(a_,i,j),

$ 2.0*CHN_REAL_VALUE (b_,i,j),ierr)
end do

end do

call CHN_END_LOCAL (my_comm,ierr)

We note that CHN_Begin_local takes as an argument a communicator. All processors in
its communication domain henceforth suppress broadcasts. Broadcasts resume—and the drifting
program counters are effectively resynchronized—by placement of the matching CHN_End_local.
If broadcasts are not suppressed and the programmer mistakenly allows some processors in the
communicator to skip a call involving CHN_Value or CHN_Mvalue, the program will deadlock,
because the broadcast cannot complete.

int CHN_Begin_local(MPI_Comm comm)
CHN_BEGIN_LOCAL(comm, ierr)
integer comm, ierr

int CHN_End_local (MPI_Comm comm)
CHN_END_LOCAL(comm, ierr)
integer comm, ierr

IN comm handle to MP| communicator

5.2 Relaxing owner-assigns/serves rules

Suppressing broadcast operations is an important step on the way to an efficient concurrent
program, but it is generally not sufficient in case of stencil operations on distributions. Imagine
the common nine-point-star stencil on a 2D discretization grid, depicted in Figure 5.1a. Evaluation
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of the contributions of neighboring grid points to the stencil operation must inevitably lead to
a situation where some grid points are in one cell of the decomposition, and others in another.
Hence, if broadcasts are not suppressed and a CHN_Assign statement is used to implement the
stencil operations, deadlock will ensue if only the processor owning the center point of the stencil
executes it. But if broadcasts are suppressed, some of the contributions to the right hand side
value will be undefined.

a. star stencils b. ghost points overlap cells
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Figure 5.1: Star difference stencil on 2D grid uses ghost points

The solution is to make sure that remote data is fetched in advance, and stored in the location
where the stencil operation ‘expects’ it, namely in a border of buffer or ghost points around each
cell, as indicated in Figure 5.1a. These ghost points act as a cache for remote data. Section
6.1.1 explains how the cache is filled. Subsequently, Charon has to be informed to relax the
owner-serves rule and reach into the cache for remote data, instead of requesting information
from other processors. This is performed by function CHN_Begin_ghost_access.

Now a certain ambiguity arises, because one processor may own multiple cells within the
decomposition (see Figure 5.1b). Ghost points of one cell may coincide with ghost points or
interior grid points of another cell owned by the same processor. The ambiguity is removed by
specifying which cell's ghost points may be accessed. When ghost point access is no longer
required or desired, or needs to be transferred to another cell, the programmer calls CHN_End_
ghost_access.

int CHN_Begin_ghost_access(int decomposition, int cell_num)
CHN_BEGIN_GHOST_ACCESS(decomposition, cell_num, ierr)
integer decomposition, cell_num, ierr

int CHN_End_ghost_access(int decomposition, int cell_num)
CHN_END_GHOST_ACCESS (decomposition, cell_num, ierr)
integer decomposition, cell_num, ierr

INOUT decomposition handle to decomposition data structure
IN cell_num global sequence number of cell within decomposition
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Often, the programmer wishes not only to reach into the ghost point cache to fetch remote
data, but to store data there as well. Write access to the ghost points through CHN_Address
is also provided by CHN_Begin_ghost_access, and is revoked similarly. The combined effect of
the access functions is to enlarge temporarily the active cell in the decomposition by the border
of ghost points.

It should be stressed that all Charon calls are executable statements, not directives; the exact
location of the CHN_Begin/End_local and CHN_Begin/End_ghost_access calls is immaterial
and they do not need to be properly nested, as long as Charon is in the proper state once a
function requiring a broadcast or ghost point data is encountered.

Finally, we note that the use of CHN_Begin/End_ghost_access is independent of the use
of CHN_Begin/End_local. This allows the programmer to test the correctness of ghost point
values before giving up the convenience of the serial logic of the code.

5.3 Parallel execution examples

Here we demonstrate how a segment of code, through successive tuning, is tranformed from
completely serial to completely concurrent execution. The code represents the application of a
seven-point-star stencil operator on all interior points of a 3D grid of an arbitrarily distributed
variable a_, based on array a. The result is stored in the variable r_ (array r), whose distribution
is based on the same decomposition my_dcmp. Grid point indices all start with 1. Grid sizes are
stored in array nsize. Distribution a_ has one ghost point, while r_ has none.

do k = 2, nsize(2)-1
do j = 2, nsize(1)-1
do i = 2, nsize(0)-1
call CHN_ASSIGN(CHN_ADDRESS(r_,i,j,k),-6.0%CHN_REAL_VALUE(a_,i,j,k)+

$ CHN_REAL_VALUE(a_,i+1,j,k)+CHN_REAL_VALUE(a_i-1,j,k)+
$ CHN_REAL_VALUE(a_,i,j+1,k)+CHN_REAL_VALUE(a_i,j-1,k)+
$ CHN_REAL_VALUE(a_,i,j,k+1)+CHN_REAL_VALUE(a_i,j,k-1),
$ ierr)
end do
end do
end do

This piece of code is an exact reflection of the serial code, even though nothing is known
about the particular decomposition used. Performance will be dismal, because of the many
broadcasts and function calls. The following fragment removes all broadcasts, and replaces them
with a single call to the Charon communication function CHN_Copy_faces_all, to be described
in Chapter 6. CHN_Copy_faces_all fills the ghost point buffer with useful data from adjacent
cells (usually owned by different processors).

call CHN_COPY_FACES_ALL(a_,CHN_NONPERIODIC,1,CHN_STAR,ierr)
call MPI_COMM_RANK (my_comm,my_rank,ierr)
call CHN_BEGIN_LOCAL(my_comm,ierr)

do ¢ = 0, CHN_TOTAL_NUM_CELLS (my_dcmp)-1
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if (CHN_CELL_OWNER(my_dcmp,c) .eq. my_rank) then
call CHN_BEGIN_GHOST_ACCESS(my_dcmp,c,ierr)
do k = max(2,CHN_CELL_START_INDEX (my_dcmp,c,2)),

$ min(CHN_CELL_END_INDEX (my_dcmp,c,2) ,nsize(2)-1)
do j = max(2,CHN_CELL_START_INDEX(my_dcmp,c,1)),
$ min (CHN_CELL_END_INDEX (my_dcmp,c,1) ,nsize(1)-1)
do i = max(2,CHN_CELL_START_INDEX (my_dcmp,c,0)),
$ min (CHN_CELL_END_INDEX (my_dcmp,c,0) ,nsize(0)-1)

call CHN_ASSIGN(CHN_ADDRESS(r_,i,j,k),-6.0xCHN_REAL_VALUE(a_,i,j,k)+

$ CHN_REAL_VALUE(a_,i+1,j,k)+CHN_REAL_VALUE(a_i-1,j,k)+
$ CHN_REAL_VALUE(a_,i,j+1,k)+CHN_REAL_VALUE(a_i,j-1,k)+
$ CHN_REAL_VALUE(a_,i,j,k+1)+CHN_REAL_VALUE(a_i,j,k-1),
$ ierr)
end do
end do
end do
call CHN_END_GHOST_ACCESS (my_dcmp,c,ierr)
end if

end do

call CHN_END_LOCAL (my_comm,ierr)

We note the following. To obtain access to ghost points we need to specify which cell of the
decomposition is involved. Hence, it is most natural to replace the loop over all the points in the
grid by a loop over all points of all cells of the grid. This automatically avails the programmer
of the cell number. It also allows the programmer to test for cell ownership and skip execution
of the loop body if appropriate. This saves many point ownership tests and assignment function
calls. It also means that the domain decomposition is now somewhat exposed, and the grid point
loop bounds become a little more complicated. Nevertheless, the above code fragment is still
completely general, and valid for all decompositions. It is also concurrent.

The next optimization removes all assignment function calls. It also visits only those cells
actually owned by the calling processor, saving the tests for cell ownership.

integer a_size(0:2), r_size(0:2), start(0:2), end(0:2)
call CHN_copy_faces_all(a_,CHN_NONPERIODIC,1,CHN_STAR,ierr)

do my_c = 0, CHN_TOTAL_NUM_OWNED_CELLS (my_dcmp)-1
¢ = CHN_OWN_TO_GLOBAL_CELL_INDEX (my_dcmp,my_c)
a_offset = CHN_ARRAY_OFFSET(a_,my_c)
r_offset = CHN_ARRAY_OFFSET(r_,my_c)
do dir =0, 2
a_size(dir) CHN_ARRAY_SIZE(a_,my_c,dir)
r_size(dir) CHN_ARRAY_SIZE(r_,my_c,dir)
start(dir) = max(2,CHN_CELL_START_INDEX (my_dcmp,c,dir))+1-
$ CHN_CELL_START_INDEX (my_dcmp,c,dir)
end(dir) = min(nsize(dir)-1,CHN_CELL_END_INDEX (my_dcmp,c,dir))+1-
$ CHN_CELL_START_INDEX (my_dcmp,c,dir)
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end do
call loop_body(a(a_offset),r(r_offset),a_size,r_size,start,end)
end do

subroutine loop_body(a,r,a_size,r_size,start,end)

integer a_size(0:2), r_size(0:2), start(0:2), end(0:2), i, j, k
real a(0:a_size(0)-1,0:a_size(1)-1,0:a_size(2)-1),

$ r(r_size(0),r_size(1),r_size(2))

do k = start(2), end(2)
do j = start(l), end(1)
do i = start(0), end(0)
r(i,j,k) = -6.0%a(i,j,k)+a(i+l,j,k)+a(i-1,j,k)+

$ a(i,j+1,k)+a(i,j-1,k)+
$ a(i,j,k+1)+a(i,j,k-1)
end do
end do
end do
return
end

It is no longer necessary to suppress broadcasts, nor to explicitly allow access to ghost point
values, because there are no more calls to CHN_Address or CHN_Value. Note the use of the
subroutine interface to redimension arrays a and r, which were assumed one-dimensional storage
regions (using arrays to serve to dimension other arrays is not strictly legal Fortran 77, although
many compilers allow it. It is allowed in Fortran 90). Often, however, it will be possible to
dimension arrays upfront, when more knowledge about the distribution is available.

For example, if the default Charon storage model for distributions is used, and/or if it is known
from the outset that each processor owns exactly one cell (uni-partition), simplifications can be
made. Below is the final, optimal version of the code for the standard storage model (each cell
sub-array has the same dimensions).

dimension a(0:c_size0+1,0:c_sizel+1,0:c_size2+1,0:MAXCELLS-1),
$ r(c_size0,c_sizel,c_size2,0:MAXCELLS-1)

call CHN_COPY_FACES_ALL(a_,CHN_NONPERIODIC,1,CHN_STAR,ierr)

do my_c = 0, CHN_TOTAL_NUM_OWNED_CELLS (my_dcmp)-1
¢ = CHN_OWN_TO_GLOBAL_CELL_INDEX (my_dcmp,my_c)
do kk = max(2,CHN_CELL_START_INDEX(my_dcmp,c,2)),
$ min (CHN_CELL_END_INDEX (my_dcmp,c,2) ,nsize(2)-1)
k = kk-CHN_CELL_START_INDEX (my_dcmp,c,2)+1
do jj = max(2,CHN_CELL_START_INDEX(my_dcmp,c,1)),
$ min (CHN_CELL_END_INDEX (my_dcmp,c,1) ,nsize(1)-1)
j = jj-CHN_CELL_START_INDEX (my_dcmp,c,1)+1
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do ii = max(2,CHN_CELL_START_INDEX(my_dcmp,c,0)),
$ min (CHN_CELL_END_INDEX (my_dcmp,c,0) ,nsize(0)-1)
i = ii-CHN_CELL_START_INDEX(my_dcmp,c,0)+1

r(i,j,k,my_c) = -6.0*a(i,j,k,my_c)+

$ a(i+1,j,k,my_c)+a(i-1,j,k,my_c)+
$ a(i,j+1,k,my_c)+a(i,j-1,k,my_c)+
$ a(i,j,k+1,my_c)+a(i,j,k-1,my_c)
end do
end do
end do
end do

Note the use of the auxiliary coordinates ii, jj and kk, which act as global grid indices.
They are particularly useful if tests have to performed on global coordinates, as is the case when
determining which are interior points.

We have assumed that the programmer has computed the maximum cell sizes in all coordinate
directions and stored these in c_size0, c_sizel, and c_size2, respectively. We also assume
that the number of cells for each processor does not exceed MAXCELLS. It the number of cells is
exactly one (uni-partition), the code can be simplified even further.

The final version of the code is very similar to what would have been obtained in any hand-
coded message passing program, and it would appear that not much has been gained by using
Charon. But there are four main differences. First, the programmer can use the bookkeeping
functions provided by Charon, knowing that they are fully debugged. Second, the library function
CHN_Copy_faces_all can be invoked to fill ghost point values, again with the assurance that
it will always yield the correct result. Third, the efficient concurrent code has been developed
in a stepwise fashion, maintaining correctness and consistency with the serial code at all times.
Fourth, the optimized code segment can be run in conjunction with other totally unoptimized
(and even nondistributed) code segments, allowing for a piecemeal program conversion.

Another, less conspicuous, advantage of using Charon is that it is relatively easy to change to
another decomposition, especially in the early phases of tuning, when not much explicit knowledge
regarding the decomposisiton has been used. Naturally, the more intrepid programmer may skip
some parts of the tuning procedure, once some confidence has been built regarding the exact
operation of Charon functions.
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Chapter

Communications

Charon contains two different types of communications, in addition to those already available
through MPI. The first type, called structured communications, transfers data between locations
accessible through Charon’s regular value and address functions. In other words, the data is
transferred between grid points on the local and remote processors.

The second type, unsurprisingly called unstructured communications, transfers data between
grid locations and ‘private’ buffers unrelated to any global grid.

6.1 Structured communications

A data parallel computation can be loosely defined as a global set of tasks, without explicit
specification of which processor is responsible for what subset of tasks. The set of tasks comprises
a pool of data on which essentially independent operations are performed. Assignment of the
subtasks is determined by the subset of the data owned by each processor.

We can similarly define the seemingly oxymoronic data parallel communications as follows.
The communication operation consists of a pool of independent data transfers, without explicit
specification of which processors are responsible for what subset of the transfers. Assignment of
the transfer subtasks is determined by the subsets of the source and destination data owned by
each processor or set of processors.

Charon’s structured communications fit the definition of data parallel communications. The
definition makes sense, because structured communications can be specified completely in terms
of grid points, without ever making reference to which processor owns what part of the data to
be transferred.

6.1.1 Copying between neighboring cells

Stencil operations often require data from neighboring cells in the decomposition. Instead of
fetching these through implicitly invoked communications every time a nearby distribution element
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is referenced, the programmer may transfer a number of such elements explicitly in bulk before
they are needed, and store them in a border of ghost points around the cell, which acts as a
cache for remote data.

For this purpose Charon provides the function CHN_Copy_faces (page 65), and the useful
variation CHN_Copy_faces_all (page 67). In CHN_Copy_faces the user specifies a distribu-
tion, a coordinate direction, and a particular cut (in that coordinate direction) of the underlying
section across which distribution values at grid points are copied. If all cuts are to be selected
simultaneously, the value CHN_ALL is specified.

Additionally, the user indicates the thickness (not to exceed the number of ghost points) of
the layer of points involved in the copy operation, and a subset of tensor components of the
distribution called a tensor mask. For a detailed description of tensor masks, see Section 6.3. If
all tensor components are to be copied (as is the case in almost all examples in this manual), set
mask equal to CHN_ALL.

The programmer also specifies the Cartesian product of grid points (a ‘panel’) along the cut
to which copying is to be limited. The panel is defined in terms of the global grid, by specifying
its beginning and end points, as indicated for a 3D grid in Figure 6.1. In general, on an n-
dimensional grid, n — 1 coordinates are required to specify each of the vectors panel_start and
panel_end. One coordinate, that which corresponds to the coordinate direction of the cut, is
omitted, since it is implied by the actual cut value. In Figure 6.1 cut number one in coordinate
direction one is selected. Hence, the panel vectors only contain the starting and ending values for
coordinate directions zero and two, respectively. If all grid points in a certain coordinate direction
are to be included in a panel, the user may select CHN_ALL for the corresponding entry in either
panel_start or panel_end.
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Figure 6.1: Specification of cut and panel for CHN_Copy_faces

The side parameter is used to determine whether copying should take place in the positive co-
ordinate direction specified (CHN_RIGHT), the negative direction (CHN_LEFT), or both (CHN_BOTH_
SIDES). Finally, the periodicity parameter specifies whether to allow copying from one side of
the grid to the other, corresponding to cuts numbered -1 or CHN_Num_cuts(section,dir). If
CHN_NONPERIODIC, such copy requests are ignored, if CHN_PERIODIC, they are honored.
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Sometimes it is convenient when performing a periodic copy operation to write some or all
of the copied values not into ghost points, but into points properly owned by the cell(s) on the
other side of the grid. This is accomplished by specifying CHN_PERIODIC_TRUNCATED, instead of
just CHN_PERIODIC. The effect is precisely as if the outer border of the grid proper has turned
into a layer of ghost points (of the thickness of that specified in the copy operation). Hence,
both source and destination locations of copy values change with respect to plain CHN_PERIODIC
copying. Because no ghost points outside the perimeter of the grid are required, truncated
periodic copying can be carried out even for distributions that are defined without ghost points,
provided that the copy operation is restricted to the boundaries of the grid. More information on
the use of truncated periodic copying is given in the example of Section 10.4.

The syntax for the face copy function is as follows.

int CHN_Copy_faces(int distribution, int periodicity, int thickness, int mask,
int dir, int side, int cut_num, int *panel_start, int *panel_end)
CHN_COPY_FACES(distribution, periodicity, thickness, mask, dir, side, cut_num,
panel_start, panel_end, ierr)
integer distribution, periodicity, thickness, mask, dir, side, cut_num,
panel_start(*), panel_end(*), ierr

INOUT distribution handle to distribution data structure
IN periodicity switch: CHN_NONPERIODIC, CHN_PERIODIC or CHN_PERIODIC_TRUNCATED

IN thickness thickness of layer of points to be copied

IN mask handle to mask data structure, or CHN_ALL

IN dir coordinate direction

IN side switch: CHN_LEFT, CHN_RIGHT, or CHN_BOTH_SIDES

IN cut_num sequence number of cut, or CHN_ALL

IN panel_start starting point of copy panel (vector); set component to CHN_ALL for all points
IN panel_end end point of copy panel (vector); set component to CHN_ALL for all points

The copy functions can operate on multiple tensor components of the distribution simultane-
ously, but because this is difficult to visualize, we present examples for scalar distributions only.
In Figure 6.2 on page 66 we show several examples of the use of CHN_Copy_faces applied to a
distribution with two ghost points, along with the parameters that produced the result. It is as-
sumed that before the copy operation, the 2D distribution holds useful information only at points
properly contained within its cells, whose boundaries are indicated by solid lines. For convenience,
all grid points of each cell are initialized with a value unique to that cell. To show the results
clearly, an exploded view of the grid is offered, in which ghost point values are depicted after the
copy operation, in addition to the original interior cell point values. Ghost point values not filled
by the operation are left blank.

The inverse of CHN_Copy_faces, which transfers previously written ghost point values to the
points properly owned by neighboring cells, is called CHN_Copy_ghost_faces. lts parameters are
the same as those of CHN_Copy_faces, and have identical meaning. Truncated periodic copying
(CHN_PERIODIC_TRUNCATED) may be specified for CHN_Copy_ghost_faces as well (see above,
and Section 10.4).

int CHN_Copy_ghost_faces(int distribution, int periodicity, int thickness, int mask,
int dir, int side, int cut_num, int *panel_start, int #*panel_end)
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CHN_COPY_GHOST_FACES (distribution, periodicity, thickness, mask, dir,
side, cut_num, panel_start, panel_end, ierr)
integer distribution, periodicity, thickness, mask, dir, side,
cut_num, panel_start(*), panel_end(*), ierr

INOUT distribution handle to distribution data structure
IN periodicity switch: CHN_PERIODIC or CHN_NONPERIODIC

IN thickness thickness of layer of points to be copied

IN mask handle to mask data structure, or CHN_ALL

IN dir coordinate direction

IN side switch: CHN_LEFT, CHN_RIGHT, or CHN_BOTH_SIDES
IN cut_num sequence number of cut, or CHN_ALL

IN panel_start starting point of copy panel (vector)

IN panel_end end point of copy panel (vector)

CHN_Copy_faces is quite flexible and can be used to implement a wide variety of parallel
algorithms involving so-called star shaped stencils (see Figure 6.3a). It is deficient, however, in
its support for difference stencils containing cross terms, i.e. stencils containing points that are
shifted in more than one coordinate direction with respect to the central point. Examples are
the compact 27-point box stencil in 3D, or the 13-point diamond-shaped stencil in 2D, shown in
Figures 6.3b and 6.3c, respectively.

a: 9-point star b: 27-point cube c: 13-point diamond

CHN_STAR CHN_BOX CHN_BOX
Figure 6.3: Star- and box-shaped difference stencils

Any non-star-shaped stencil, whether symmetrical or asymmetrical, requires diagonal copying
of face values to satisfy explicitly remote data needs. For example, to evaluate the 13-point
diamond-shaped stencil at the lower right corner of the cell containing the value ‘r’ in Figure 6.2
would require contributions from the cells holding ‘s’s and ‘v's (orthogonal copying) as well as
from the cell holding ‘x’s (diagonal copying). For such communication needs Charon provides
the function CHN_Copy_faces_all, which copies face values in all coordinate directions (both
positive and negative) and along all points on all cuts. The stencil shape parameter determines
if the copying is only orthogonal (CHN_STAR), or also diagonal (CHN_BOX). In the latter case,
transferring data in the respective coordinate directions occurs in stages to reduce the impact of
latency, as explained, for example by Scherr [22].

int CHN_Copy_faces_all(int distribution, int periodicity, int thickness, int mask,
int shape)
CHN_COPY_FACES_ALL(distribution, periodicity, thickness, mask, shape, ierr)
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Figure 6.4: Using CHN_Copy_faces_all to fill ghost point values of six-cell scalar distribution

integer distribution, periodicity, thickness, mask, shape, ierr

INOUT distribution handle to distribution data structure
IN periodicity switch: CHN_PERIODIC or CHN_NONPERIQDIC

IN thickness thickness of layer of points to be copied
IN mask handle to mask data structure, or CHN_ALL
IN shape switch: CHN_STAR or CHN_BOX

of

is

$

In Figure 6.4 we show the result of applying CHN_Copy_faces_all to the scalar distribution
Figure 6.2. Observe that using

call CHN_COPY_FACES_ALL(distribution,periodicity,thickness,CHN_ALL,CHN_STAR,ierr)
equivalent to:

num_dims = CHN_NUM_DIMS(CHN_GRID(CHN_SECTION(CHN_DECOMPOSITION(distribution))))
do dir = 1, num_dims-1
panel_start(dir) = CHN_ALL
panel_end(dir) = CHN_ALL
end do
do dir = 0, num_dims-1
call CHN_COPY_FACES(distribution,periodicity,thickness,CHN_ALL,dir,
CHN_BOTH_SIDES,CHN_ALL,panel_start,panel_end,ierr)
end do

Hence, even if diagonal copying is not required, it is often convenient to use CHN_Copy_

faces_all if all cells in the grid need to exchange data with their neighbors. There is no
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inverse of CHN_Copy_faces_all, that is, function CHN_Copy_ghost_faces_all does not exist.
The reason is that multiple ghost points map to the same interior cell points (even in the case
of star-shaped difference stencils), which would lead to ambiguity. For the same reason, CHN_
PERIODIC_TRUNCATED cannot be specified when copying ghost cell faces.

Cell face copy functions will produce incorrect or ambiguous results if the cells involved do not
have enough points to support the copying. For example, if a decomposition is defined such that
certain cells have only one point in the second coordinate direction, then a copy operation in that
coordinate direction whose thickness parameter is two will fail. If the periodicity parameter CHN_
PERIODIC_TRUNCATED is specified, the size restrictions on cells at the boundary become more
severe, because the cell size is effectively shrunk by the width of the border of ghost points. It is
the user's responsibility to provide valid parameters for the copy operation. The exact conditions
(all relating to the coordinate direction in which copying takes place) are as follows, assuming
that all cuts are selected for copying (cuts = CHN_ALL). If only one cuts is selected, some of
the restrictions might be relaxed.

Let n,, be the size of the grid. When the copying is from ghost points to grid points (CHN_
Copy_ghost_faces), the boolean variable ghost is true, and false otherwise (—ghost). n. is the
size of any cell, n., the size of a cell on the boundary of the grid. The thickness of the layer to
be copied is [, and the number of ghost points of the distribution is d.

periodicity
CHN_(NON_)PERIODIC CHN_PERIODIC_TRUNCATED
side —ghost ghost —ghost ghost
ne > 1 ne > 1
CHN_LEFT/RIGHT | n,>1 ne > 1 Ne, > d+1 Ne, > d+1
Ngr > 2d +1 Ngr > 2d +1
ne > 1 ne > 21
CHN_BOTH_SIDES | n. > ne > 2l Ne, > d+1 Ne, > d + 21
Ngr > 2d +1 Ngr > 2d + 21

Table 6.1: Minumum cell and grid size requirements for cell face copy functions

All copy functions and other structured and unstructured communications—save redistributions—
are nonlocal, and pseudo-collective (see Section 1.10); completion may depend on other proces-
sors, which need to call the function in question with the same parameters. But only those
processors actively involved in sending and/or receiving data need to call the function. Others
can safely skip it. Redistribution is nonlocal and collective, because it relies on MPI nonlocal
collective communications

Finally, we observe that Charon’'s communication functions do not require multiple processors
per se. A grid may be divided into many cells, all assigned to the same processor. Charon's
communications make sure that stencil operations can be performed on the partitioned single-
owner grid. This strategy may increase data locality, which is important for performance on
computers with hierarchical memories.
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6.1.2 Redistributions

Certain algorithms feature strong but mutually incompatible data dependencies during different
parts of the computation. As an example we mention the multi-dimensional Fast Fourier Trans-
form, discussed in Section 3.5.2 on page 40. Such problems can sometimes benefit from a change
in the overall data distribution. In keeping with High Performance Fortran terminology [15], we
call this operation a ‘redistribution’. The Charon function accomplishing it is CHN_Redistribute.
Although its principal goal is to establish data rearrangements like the transpositions depicted
in Figure 3.7 on page 41, CHN_Redistribute can transform any legal Charon distribution into any
other compatible distribution. Two distributions are compatible under the following conditions:

1. They are based on the same grid variable.

2. They have the same tensor rank.

3. They do not overlap in memory (this restriction will be removed in a future Charon release).
4. They are of the same data type (e.g. both MPI_REAL, or both MPI_CHAR).

These rules imply that two distributions are compatible, even if they have different numbers
of ghost points, if they are based on different decompositions, or if their tensor indices are in
different positions with respect to the spatial indices (i.e. one is defined using CHN_Set_tensor_
indices_first, and the other using CHN_Set_tensor_indices_last). They also may use
different amounts of storage space on the calling processor, as long as the programmer guarantees
that enough space is available.

As a result, redistribution is a very flexible function. Besides the transposition mentioned
above, a particularly useful application is the redistribution between an arbitrary multi-owner
distribution and one that contains just a single cell (solo-partition), usually without ghost points.
If the solo-partition distribution is defined with carefully chosen array dimensions, its memory
lay-out can be made to correspond exactly with that of the serial code (see Section 3.4.2).
As a consequence, mapping back and forth between multi-owner and single-owner distributions
allows the programmer to switch dynamically between serial and distributed (and perhaps parallel)
program execution, without having to change the serial part of the code at all. Mapping to the
single-owner distribution automatically transfers the distributed data into the locations expected
by the serial code, and vice versa.

This feature can be exploited to parallelize only parts of a legacy code, while keeping the rest
unchanged. Because of its massive communication volume, redistribution is an expensive opera-
tion, whose application should be limited to a minimum. Moreover, Amdahl’s law soon hampers
parallel speed-up if parts of the code are run in serial mode, so the aim of most programmers
will be to remove all mappings to single-owner distributions. But as a parallel code development
device this type of redistribution is very useful. It allows the parallelization process to focus on
one routine (or even one statement) at a time, without worries about correctness of the rest of
the code.

int CHN_Redistribute(int distibutionl, int distribution2)
CHN_REDISTRIBUTE(distibutionl, distribution2, ierr)



UNSTRUCTURED COMMUNICATIONS 71

integer distibutionl, distribution2, ierr

INOUT distibutionl handle to output distribution data structure
IN distribution2 handle to input distribution data structure

6.2 Unstructured communications

Sometimes it will be necessary to specify operations at grid points that depend on data located at
non-adjacent points. The most obvious example is that of periodic boundary conditions, but these
can often be handled by specifying CHN_PERIODIC in CHN_Copy(_ghost) _faces(_all). Other
more complicated examples might be the inclusion of some long-range source functions, such
as those occurring in numerical models of turbulence, radiation, electric potential, etc. In these
cases the programmer can rely on the implicitly invoked communications of CHN_ (M) Value—at
the high cost of many broadcasts and synchronizations.

Another solution is to request explicitly for distributed data to be copied in bulk to a user-
specified buffer on a certain processor. This is done through function CHN_Get_tile. A con-
venient way of specifying subsets of global distribution data is to indicate the beginning and
ending coordinates of Cartesian subsets of the grid, termed tiles. Tiles are similar to the panels,
used, for example, in the function CHN_Copy_faces (see Section 6.1.1). They are defined by
the vectors tile_start and tile_end. The difference is that tiles are n-dimensional subsets of
n-dimensional grids, whereas panels have dimensionality n — 1. Of course, by selecting the tile
to have size one in certain coordinate directions, the user can effect copying lower-dimensional
subsets of the distribution.

Often the programmer would like to view the buffer receiving the distribution data as a multi-
dimensional array itself, into which the subset of the distribution is ‘inserted’. The user interface
of CHN_Get_tile accommodates this by letting the user specify the starting address of the buffer,
the starting and ending grid indices of the multi-dimensional buffer array (vectors array_start
and array_end. and the grid indices of the insertion point (vector insert_point). We indicate
in Figure 6.5 how these index vectors relate to each other and the grid variable. The tile may
span several cells in the decomposition, in which case their respective owners must all participate
in the communication.

int CHN_Get_tile(int distribution, int mask, int root, void *start_address,
int *tile_start, int *tile_end, int *insert_point, int *array_start,
int *array_end)
CHN_GET_TILE(distribution, mask, root, start_address, tile_start, tile_end,
insert_point, array_start, array_end, ierr)
integer distribution, mask, root, tile_start(*), tile_end(*), insert_point(*),
$ array_start(*), array_end(*), ierr
<type> start_address(*)

IN distribution handle to distribution data structure

IN mask handle to mask data structure, or CHN_ALL

IN root rank of the processor receiving data

INOUT start_address beginning of local buffer

IN tile_start starting grid indices (vector) of tile to be copied

IN tile_end ending grid indices (vector) of tile to be copied
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Figure 6.5: Using CHN_Get/Put_tile to copy between global distribution and local buffer

IN insert_point insertion point (vector) into local buffer array
IN array_start (virtual) starting point (vector) of local buffer array
IN array_end (virtual) ending point (vector) of local buffer array

There need not be any relationship between the size of the grid and the dimensions that
the programmer specifies for interpretation of the local buffer as a multi-dimensional array. As
long as the tile fits inside the array, the data transfer completes successfully. We recall from the
discussion about panels in Section 6.1.1 that tile, local array, and insertion point are specified in
terms of spatial coordinates (i.e. grid indices).

Special attention must be paid to the role of the tensor mask. It is used to specify the subset
of the tensor components of the distribution that is being gathered onto the root processor.
Any “holes” in the mask (i.e. tensor components that are not fetched) are eliminated from the
tile by compaction. For example, if the distribution is defined as a (3x3) tensor field and the
tensor mask only contains the diagonal elements, then the resulting tile is stored as if it were
a (3x1) vector field. In other words, the tile always contains contiguous data. Nonzero tensor
components in the mask are ordered lexicographically in the compacted tile, while respecting their
position before or after the spatial indices. A consequence of the storage strategy for tiles is that
the programmer need only reserve as much space as is required for the tensor components that
are actually being fetched, not for the holes.

While CHN_Get_tile provides a copy function from the global distribution to a local buffer,
the reverse is also possible, through CHN_Put_tile. This functions ‘seeds’ a tile within the
distribution with data stored in a local buffer (again interpreted as a multi-dimensional array) on
a particular processor. lts parameters are the same as those of CHN_Get_tile, as illustrated in
Figure 6.5, except that the insertion point has become the ‘extraction point’ from the local array.
The tensor mask now defines a scattering from the compacted tile to the appropriate locations
in the tensor field of the target distribution.

int CHN_Put_tile(int distribution, int mask, int root, void *start_address,
int *tile_start, int *tile_end, int *extract_point, int *array_start,



UNSTRUCTURED COMMUNICATIONS 73

int *array_end)
CHN_PUT_TILE(distribution, mask, root, start_address, tile_start, tile_end,
insert_point, array_start, array_end, ierr)
integer distribution, mask, root, tile_start(*), tile_end(*), extract_point(*),
$ array_start(*), array_end(*), ierr
<type> start_address(*)

INOUT distribution handle to distribution data structure

IN mask handle to tensor mask data structure, or CHN_ALL

IN root rank of the processor providing data

IN start_address beginning of local buffer

IN tile_start starting grid indices (vector) of tile to be filled

IN tile_end ending grid indices (vector) of tile to be filled

IN extract_point extraction point (vector) from local buffer array

IN array_start (virtual) starting point (vector) of local buffer array
IN array_end (virtual) ending point (vector) of local buffer array

Finally, Charon also provides collective versions of the above unstructured communications.
Instead of transferring a tile from a distribution to a user buffer on a single processor (CHN_Get_
tile), we may elect to store this tile in private buffers on all processors in the communicator
(CHN_Bcast_tile). In this broadcast operation no recipient needs to be specified. While all
processors should make reference to the same tile in the distribution, the dimensions of the
private array and the insertion point may be different on each processor.

Similarly, instead of transferring the content of a local buffer on a single processor to a tile
in the distribution, all processors in the communicator may conspire to write the tile, through
CHN_Reduce_tile. In this case a reduction operation (MPI_MAX, MPI_MIN, MPI_SUM, or MPI_
PROD) must be specified, to be applied to the data elements from different processors sent to
the same location in the tile. Again, all processors should make reference to the same tile in the
distribution, but the dimensions of the private array and the insertion point may be different on
each processor.

int CHN_Bcast_tile(int distribution, int mask, void *start_address, int *tile_start,
int *tile_end, int *insert_point, int *array_start,
int *array_end)
CHN_BCAST_TILE(distribution, mask, start_address, tile_start, tile_end, insert_point,
array_start, array_end, int ierr)
integer distribution, mask, tile_start(*), tile_end(*), insert_point(*),
$ array_start(*), array_end(*), ierr
<type> start_address(*)

IN distribution handle to distribution data structure

IN mask handle to tensor mask data structure, or CHN_ALL
INOUT start_address beginning of local buffer

IN tile_start starting grid indices (vector) of tile to be copied

IN tile_end ending grid indices (vector) of tile to be copied

IN insert_point insertion point (vector) into local buffer array

IN array_start (virtual) starting point (vector) of local buffer array

IN array_end (virtual) ending point (vector) of local buffer array
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int CHN_Reduce_tile(int distribution, int mask, void *start_address, int *tile_start,
int *tile_end, int *extract_point, int *array_start,
int *array_end, MPI_Op op)
CHN_REDUCE_TILE(distribution, mask, start_address, tile_start, tile_end, insert_point,
array_start, array_end, op, ierr)
integer distribution, mask, tile_start(*), tile_end(*), extract_point(*),
$ array_start(*), array_end(*), op, ierr
<type> start_address(*)

INOUT distribution handle to distribution data structure

IN mask handle to tensor mask data structure, or CHN_ALL

IN start_address beginning of local buffer

IN tile_start starting grid indices (vector) of tile to be filled

IN tile_end ending grid indices (vector) of tile to be filled

IN extract_point extraction point (vector) from local buffer array

IN array_start (virtual) starting point (vector) of local buffer array

IN array_end (virtual) ending point (vector) of local buffer array

IN op MPI operation specifying how to reduce co-located data

The functionality of CHN_Get_tile and CHN_Put_tile is comparable to that of the Global
Arrays toolkit [20] operations GA_get and GA_put, respectively. There are no Global Arrays
equivalents to the collective Charon functions CHN_Reduce_tile and CHN_Bcast_tile.

6.3 Tensor masks

. A special Charon data structure is the so-called tensor mask. It is used to indicate a subset
of the tensor components in a distribution to which a particular communication function (CHN_
Copy(_ghost) _faces(_all) or CHN_Get/Put/Reduce/Bcast_tile) is to be limited. The
mask is initialized using CHN_Create_tensor_mask, and is destroyed by calling CHN_Delete_
tensor_mask. Initialization is similar to that of distributions in that the tensor rank and the
extents of the tensor indices are specified. Starting values for the indices (usually zero for C
and one for Fortran) are those set by CHN_Set_all_tensor_start_indices (See Section 3.4)
before creation of the mask, or for a particular existing mask by CHN_Set_all_tensor_start_
indices. A tensor mask can be used with any distribution that has the same tensor structure
(i.e. same shape (rank and numbers of components) and same starting indices).

int CHN_Create_tensor_mask(int *mask, int rank, ...)

CHN_CREATE_TENSOR_MASK (mask, rank, size0O, sizel, ..., ierr)
integer mask, rank, size0O, sizel, ..., ierr

0UT mask handle to tensor mask data structure

IN rank rank of tensor at each grid point

IN size0 extent of first tensor index

IN sizel extent of second tensor index

IN .. extent of subsequent tensor indices
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int CHN_Delete_tensor_mask(int *mask)
CHN_DELETE_TENSOR_MASK (mask, ierr)
integer mask, ierr

INQUT mask handle to tensor mask data structure

Initially the mask is empty, that is, no tensor components are selected for involvement in
communications yet. Individual components are added one by one by specifying their tensor
indices using CHN_Set_tensor_mask. A selected component can be removed from the mask by
calling CHN_Unset_tensor_mask. It is not an error to select a tensor component twice, or to
remove an unselected tensor component. It is also not an error to attempt to select or remove a
tensor component from the universal tensor mask identified by CHN_ALL, but it is ineffectual.

int CHN_Set_tensor_mask(int mask, ...)

CHN_SET_TENSOR_MASK (mask, index0O, index1, ..., ierr)
integer mask, index0O, index1, ..., ierr

INOUT mask handle to tensor mask data structure

IN index0 first tensor index value

IN index1 second tensor index value

IN ... subsequent tensor index values

int CHN_Unset_tensor_mask(int mask, ...)

CHN_UNSET_TENSOR_MASK (mask, index0O, indexl, ..., ierr)
integer mask, index0O, index1, ..., ierr

INOUT mask handle to tensor mask data structure

IN index0 first tensor index value

IN index1 second tensor index value

IN ... subsequent tensor index values

All tensor mask operations are local and noncollective, but any masks used in a communication
operation must be compatible with each other and the distribution on which they act.

6.3.1 Tensor mask query functions

Distribution query functions CHN_Tensor_rank, CHN_Tensor_size, and CHN_Tensor_start_
index (Section 3.4.1) can also be applied to tensor masks, with the expected results. One
additional query function, CHN_Tensor_mask, returns one if the tensor component has been
selected, and zero otherwise.

int CHN_Tensor_mask(int mask, ...)

integer function CHN_TENSOR_MASK(mask, index0O, indexl, ...)
integer mask, index0O, index1,

Error return value: —1

IN mask handle to tensor mask data structure
IN index0 first tensor index value
IN index1 second tensor index value

IN ce subsequent tensor index values
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6.4 Communication examples

On structured grids there are countless ways data elements at grid points can interact, and hence
countless possible communication examples. We give just two examples here, one for structured
and one for unstructured communications.

6.4.1 Alternating Direction Implicit (ADI)

An important aim of Charon is to support parallelization of program structures involving com-
plicated data depedencies. These often defy efficient implementation using more traditional
parallelization tools, such as High Performance Fortran (HPF) [15], PARTI [24], etc., which
essentially only allow data parallel operations.

Our example is for illustrative purposes only. It is based on the NPB Block Tri-diagonal (BT)
problem [1], which defines an ADI (Alternating Direction Implicit) algorithm to solve a system
of nonlinear partial differential equations on a 3D grid. We reduce the system to a simple linear,

scalar equation on a 2D grid:
0 d¢*>  0q®
2 _A (6.1)
ot Oz oy
The interesting part of the ADI algorithm concerns the inversion of sets of banded tri-diagonal
matrices (so-called factors), since they involve recurrences (i.e. data dependencies) in different
coordinate directions. There is one banded matrix for each grid line, in each of the two coordinate

directions. Here is the C pseudo code for a single time step of the ADI algorithm.

for (each grid point) compute_residual(rhs,q); /* rhs: residual x/
for (dir=0; dir<2; dir++) invert_factor(lhs,rhs,dir); /* lhs: banded matrix */
for (each grid point) update(q,rhs); /* q = q + rhs x/

The Charon code used to implement efficiently the residual computation, which is data parallel,
has already been described in Section 5.3 for a 3D grid. The following serial code represents the
forward-elimination phase of the inversion of the y-factor (second coordinate direction) in our
sample ADI program. The grid is assumed to have nixnj points.

#define lhs(b,i,j) 1hs[(((j)*ni+(i))*3+(b))]
#define rhs(i,j) rhs [((j)*ni+(i))]
for (j=0; j<nj-1; j++) for (i=0; i<ni; i++) {

inv = 1.0/1hs(1,i,j); /* compute pivot reciprocal */

lhs(1,i,3) *= inv; /* scale matrix row */

rhs(i,j) *= inv; /% " " "%/

lhs(1,j+1,i) -= 1hs(2,i,j)*1lhs(0,j+1,1i); /* update next row */

rhs(j+1,i) -= rhs(i,j) *lhs(0,j+1,i);  /* " Ny
}

Here the array 1hs represents a family of banded, tri-diagonal matrices, one for each grid line
in the y-direction (i.e. one for each value of i). The first index selects the particular band of the
matrix. Index O corresponds to the lower, 1 to the main, and 2 to the upper diagonal. We again
convert using only top-level Charon functions:
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for (j=1; j<=nj-1; j++) for (i=1; i<=ni; i++) {

inv = 1.0/CHN_Float_value(lhs_,1,i,j);

CHN_Assign(CHN_Address(lhs_,2,i,j), inv*CHN_Float_value(lhs_,2,i,j));

CHN_Assign(CHN_Address(rhs_,i,j), inv*CHN_Float_value(rhs_,i,j));

CHN_Assign(CHN_Address(lhs_,1,j+1,i) ,CHN_Float_value(lhs_,1,j+1,i) -
CHN_Float_value(lhs_,2,i,j)*CHN_Float_value(lhs_,0,j+1,i));

CHN_Assign(CHN_Address(rhs_,j+1,1), CHN_Float_value(rhs_,j+1,1) -
CHN_Float_value(rhs_,i,j) * CHN_Float_value(lhs_,0,j+1,i));

Notice again that in the transformed code fragment no influence of the domain decomposition
is visible. The situation changes once we start to optimize by making sure no implicitly invoked
communications are necessary. Now two approaches are available.

The first is similar to that offered by HPF, namely the CHN_Redistribute facility. Before
the iterations start, two different pencil decompositions are defined that are aligned with the z-
and y-grid lines, respectively. The corresponding distributions are rhsx_ and lhsx_, and rhsy_
and lhsy_, respectively. Switching from z-aligned to y-aligned lhs distributions is established
by calling CHN_Redistribute(lhsy_,lhsx_). The effect is a transposition of the distributed
arrays, as illustrated for a 3D grid in Figure 3.7. Although this method is fairly easy to program,
it is rather inefficient because of the large communication volume.

The second approach leaves the data distributions intact. We choose the multi-partition
domain decomposition, which has the special property that each processor owns a cell in each
row and each column of cells of the grid (see Section 3.3.1). Hence, if the solution process
advances by rows or columns of cells in the respective coordinate directions—so as to respect the
recurrence relations in these directions—, a perfect load balance ensues.

Early successful results of using multi-partitioning for parallelizing ADI applications, includ-
ing comparisons of its performance with that of pipelined and transpose-based uni-partitioning
methods, are reported in [16, 25]. Some negative experiences have also been reported [19], but
these are almost certainly attributable to very small problem sizes, deficiencies in the operat-
ing system used to carry out the numerical experiments, and the choice of 2D (instead of 3D)
multi-partitioning for 3D applications.

Because of its favorable distribution properties, multi-partitioning was chosen for the imple-
mentation of the two synthetic ADI applications SP and BT in the NAS Parallel Benchmarks
[l suite [2]. We note that none of the systems surveyed in [27] has the flexibility of supporting
multi-partitioning, but in Charon it is easily defined.

Before the loop nest is entered, we copy 1hs and rhs values immediately ‘ahead’ of each
column of cells into the ghost point locations. Thus, when the loop body is executed for the
last column of points in each column of cells, all its remote data requirements are automatically
satisfied. After all rhs and 1lhs ghost point values are written for a whole column of cells, the
updated values are transferred in bulk to the next column using CHN_Copy_ghost_faces. The
following program results (see also Section 5.3).

int allv[1] = {CHN_ALL};

/* pre-loop communications */
CHN_Copy_faces(rhs_,CHN_NONPERIODIC,1,CHN_ALL,1,CHN_LEFT,CHN_ALL,allv,allv);
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CHN_Copy_faces(1lhs_,CHN_NONPERIODIC,1,CHN_ALL,1,CHN_LEFT,CHN_ALL,allv,allv);
MPI_Comm_rank (my_comm, &my_rank) ;
CHN_Begin_local (my_comm) ;

/* jp determines the column of cells */
for (jp=0; jp<CHN_Num_cells(my_dcmp,1); jp++) {
/* ip determines the cell within the column */
for (ip=0; ip<CHN_Num_cells(my_dcmp,0); ip++) {
¢ = CHN_Cell_index(my_dcmp,ip,jp);
if (CHN_Cell_owner (my_dcmp,c)== my_rank) {
CHN_Begin_ghost_access(my_dcmp,c);
for (j =CHN_Cell_start_index(my_dcmp,1,c);
j<=min(CHN_Cell_end_index(my_dcmp,1,c),nj-2),; j++)
for (i =CHN_Cell_start_index(my_dcmp,0,c);
i<=CHN_Cell_end_index (my_dcmp,0,c); i++) {
inv = 1.0/CHN_Float_value(lhs_,1,i,j);
CHN_Assign(CHN_Address(lhs_,2,i,j), inv*CHN_Float_value(lhs_,2,i,j));
CHN_Assign(CHN_Address(rhs_,i,j), inv*CHN_Float_value(rhs_,i,j));
CHN_Assign(CHN_Address(lhs_,1,j+1,i), CHN_Float_value(lhs_,1,j+1,i)-
CHN_Float_value(lhs_,2,i,j)*CHN_Float_value(lhs_,0,j+1,1i));
CHN_Assign(CHN_Address(rhs_,j+1,i), CHN_Float_value(rhs_,j+1,i)-
CHN_Float_value(rhs_,i,j)* CHN_Float_value(lhs_,0,j+1,i));
}

CHN_End_ghost_access(my_dcmp,c) ;

}
}

CHN_Copy_ghost_faces (1lhs_,CHN_NONPERIODIC,1,CHN_ALL,0,CHN_RIGHT,ip,allv,allv);
CHN_Copy_ghost_faces(rhs_,CHN_NONPERIODIC,1,CHN_ALL,0,CHN_RIGHT,ip,allv,allv);

}

CHN_End_local (my_comm) ;

A depiction of the first five phases of the algorithm for a four-processor computation is
presented in Figure 6.6 on page 79. Cells are indicated by squares, with the pattern inside
indicating whether (some of) the array alements corresponding to grid points have only been
initialized (diagonal hatching), or have already been updated by computations or communications
(horizontal hatching). Only the ghost points of interest to the forward elimination are shown
(narrow strips on the right side of the cells). The outer loop of the code is over the columns of
cells in the grid, and each phase applies uniformly to all cells in a column. The dashed frames
around the cells owned by a particular processor (number 2, in this case) serve to show that the
code exhibits a perfectly balanced load. During each phase, all processors have the same amount
of computational work to do, or the same amount of data to communicate.

The significance of being able to write into the ghost point locations becomes clear when
examining the loop body more carefully. Each group of four assignments changes values in two
successive rows of each tri-diagonal matrix. Hence, if we allow the loop over the grid points
within each cell to run from the first to the last cell index in the second coordinate direction,
the second pair of assignments in the loop body (1hs(1,i,j+1)=... and rhs(i,j+1)=...)
would attempt to store data at points owned by cells in the next column. Allowing those values
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to be written as ghost point values enables us to retain the original structure of the loop body,
and saves us from having to rely on expensive implicitly invoked communications.

The next optimization is to eliminate all calls to CHN_Assign, and replace global with local
indexing by subtracting from each global coordinate the starting grid index of the cell (see Section
5.3, page 60). Another optimization would be to rewrite the loop over all the cells in the grid as
a loop over only those cells owned by the calling processor. This would require determining first
the proper visiting order of owned cells by individual processors.

Communication volume can be reduced by selecting from 1hs only those elements that need
to be copied to neighboring cells, i.e. by defining non-trivial tensor masks. In the pre-loop call
to CHN_Copy_faces the lower-diagonal and pivot elements (tensor indices 0 and 1) of 1hs need
to be transferred to the “left” neighboring cells, whereas in the call to CHN_Copy_ghost_faces
within the loop only the pivot element is required by “right” neighbors. We call the corresponding
tensor masks pivot_plus_lower and pivot respectively. They are defined as follows:

CHN_Create_tensor_mask(*pivot_plus_lower,lhs_)
CHN_Create_tensor_mask(*pivot,lhs_)
CHN_Set_tensor_mask(pivot_plus_lower,0)
CHN_Set_tensor_mask(pivot_plus_lower,1)
CHN_Set_tensor_mask(pivot,1)

Finally, it is possible to eliminate the entire pre-loop communication (CHN_Copy_faces) by
a simple restructuring of the loop body. This is left as an exercise to the reader.

6.4.2 C-grid flow-through conditions

Scientific programs for realistic problems need to accommodate realistic boundary conditions.
Some of these are notoriously difficult to implement using message passing techniques, and
virtually impossible to implement efficiently using any other technique. We take as an example
the C-grid flow-through conditions for airfoil computations. The physical problem is shown
schematically in Figure 6.7a.

A single structured grid is ‘wrapped’ around the airfoil, such that the computationally distinct
grid line segments a-b and d-c, as indicated in Figure 6.7b, coincide in physical space. To ensure
single-valuedness of the solution along this cut, numerical analysts usually compute the average
of the flow solutions immediately above and below the cut and store this average at both grid
points that physically coindice on the cut. Here it is assumed that grid points do exactly match
up along the cut, that grid lines pass through it at right angles, and that the grid spacing normal
to the cut is symmetrical around the cut.

The problem with this technique is that the two physically close contributors (‘p’ and ‘q’)
to the value of a point X’ on the cut are not adjacent in computational space. They may
reside on the same processor, or on different processors. Nonetheless, their values must be
combined to compute the average. To make matters worse, it is possible that contributions for
one processor come from more than one other processors, even in the case of the simple uni-
partition decomposition. It is also possible that some contributions are local, while others are
remote.

We first give the serial code for a grid of nixnj grid points. For simplicity we will only impose
the flow-through condition on a scalar variable rho. The cut extends from i=0 to i=icut on
grid line j=0. The reflected side of the cut, therefore, extends from i=ni-icut-1 to i=ni-1.
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#define rho(i,j) rhol[(j)*ni+i]
float avglnil;

for (i=0; i<=icut; i++) {
avgl[i] = 0.5%(rho(i,1)+rho(ni-1-i,1);
rho(i,0) = rho(ni-1-i,0) = avglil;

}

The first distributed version of this code using Charon is very similar.
float avglnil;

for (i=0; i<=icut; i++) {
avgl[i] = 0.5%(CHN_Float_value(rho_,i,1)+CHN_Float_value(rho_,ni-1-i,1));
CHN_Assign(CHN_Address(rho_,1,0),avg[il);
CHN_Assign(CHN_Address(rho_,ni-1-i,0) ,avg[il);

}

Here we have again used the convention of associating an array with a distribution of the
same name, suffixed by and underscore character. Notice the use of the auxiliary array avg. It
is a global variable, meaning that all processors assign the same values to its elements. This is
due to the broadcast nature of CHN_<type>_value. Because there is no distinction between
global and distributed values, we can use avg in the CHN_Assign statements to fill elements of
a distributed variable.
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Sometimes the above code is all that is needed, especially if the number of grid points and
the number of processors in the communicator are small. But if higher performance is required,
for example in 3D computations, where the flow-through condition has to be applied to a whole
plane of points, we need to aggregate communications. There are many strategies possible. We
start with a simple one, in which one processor (root) claims responsibility for implementing the
boundary condition. The processor rank is stored in variable my_rank.

float avgl[ni], avg2[nil;
int start1[2], start2[2], end1[2], end2[2];

start1[0]=0; end1[0]=icut;
start2[0]=ni-1-icut; end2[0]=ni-1;
starti[1]=end1[1]=start2[1]=end2[1]=1;
CHN_Get_tile(rho_, root, avgl, startl, endl, startl, startl, endl);
CHN_Get_tile(rho_, root, avg2, start2, end2, start2, start2, end2);
if (my_rank .eq. root) for (i=0; i<=icut; i++) {
avgl[i] = 0.5*(avgl[i]+avg2[ni-1-i]);
avg2[ni-1-i] = avgl[i]
}
starti[1]=end1[1]=start2[1]=end2[1]=0;
CHN_Put_tile(rho_, CHN_ALL, root, avgl, startl, endl, startl, startl, endl);
CHN_Put_tile(rho_, CHN_ALL, root, avg2, start2, end2, start2, start2, end2);

Although the arrays avgl and avg2 have only one subscript, they are interpreted by the
communication routines as multi-dimensional arrays. By setting the starting and ending values
for the second coordinate equal for both arrays, their effective dimensionality is reduced. Note also
that we set insertion and extraction points equal to the starting indices of the local arrays (which
are in turn equal to the starting grid indices of the tile). Consequently, copying of distributed
data starts at the very beginning of the auxiliary arrays.

The latest implementation scales much better than the first, and will be sufficient for most
applications. Further optimizations may be achieved by engaging more processors in the evalua-
tion of the averages. Using Charon query functions, each processor can determine which of the
contributing values are local, and can then request remote ‘counterparts’ to be fetched. This
reduces the amount of data communicated by a factor of two, and also spreads the computational
load more evenly. However, the logic becomes significantly more complex, and this can only be
justified if the amount of work spent on the boundary conditions is substantial in comparison
with the work on the interior grid points. Often it is not.
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Input/output

Charon does not at present feature parallel 1/O, although the MPI 2 standard would make the
implementation of such functionality straightforward. The reason for this omission is the relatively
small number of sites where MPI 2 is currently installed. Nonetheless, application programmers
will often want to read or write distributed arrays (distributions). One way to accomplish this
is to define for each distributed array for which |/O is required a distribution based on so-called
solo-partition section and decomposition data structures (see Chapter 3). Reading from disk
is performed by using standard |/O on the processor that owns the solo-partition, and calling
CHN_Redistribute to scatter the contents array to the target distribution. Writing to disk is
the reverse of this process.

While this approach is fairly straightforward and relatively efficient compared to many inde-
pendent read and write accesses by all processors owning part of the distributed array, it does
require some extraneous coding by the programmer to define auxiliary data structures. Another
strategy is to use CHN_Read/Write_distribution. These functions are not any faster than the
approach outlined above, because the 1/0 is still effectively serialized. But they obviate the need
to introduce Charon data structures just to access disk files. Another advantage of using these
specialized 1/O functions is that they give the programmer more control over memory usage.
A solo-decomposition distributed array requires a fixed amount of storage, but the Charon 1/0
functions allow the user to specify a maximum buffer size to be used. This buffer size refers to
the amount of user space reserved for gathering data before making a regular system 1/0 call,
not the size of the 1/O buffer selected by the operating system kernel. Only the root process
(rank zero) in the communicator referenced in the Charon grid definition writes to the file, so
it is required to have access to the appropriate file descriptor (unit number in Fortran). Other
processors need not have opened that file, or may have even opened another file with the same
file descriptor or unit number.

Like redistributions, Charon 1/O functions are nonlocal and collective (see Section 1.10).
The storage format is binary canonically packed. This means that data for a particular grid is
stored without holes; any ghost points or array paddings specified in the distribution are ignored.
Moreover, the relative position of tensor components and grid indices in the file is the same as

83



84 INPUT/OUTPUT

that of the distribution.

int CHN_Read_distribution(int distribution, FILE *stream, int buf_size)
CHN_READ_DISTRIBUTION(distribution, unit, buf_size, ierr)
integer distribution, unit, buf_size, ierr

IN distribution handle to distribution data structure
INOUT stream/unit input file identifier
IN buf_size maximum number of data type units to use for buffer space;

if CHN_ALL: use as much memory as is available on the system

int CHN_Write_distribution(int distribution, FILE *stream, int buf_size)
CHN_WRITE_DISTRIBUTION(distribution, unit, buf_size, ierr)
integer distribution, unit, buf_size, ierr

IN distribution handle to distribution data structure

INOUT stream/unit output file identifier

IN buf_size maximum number of data type units to use for buffer space;
if CHN_ALL: use as much memory as is available on the system

If buf_size is set to CHN_ALL, Charon assumes that any memory claimed to read or write
the distribution can be allocated on a single processor. Since Charon does not ordinarily release
temporary memory because it is likely needed again, using this buffer size value can result in
memory problems for certain other operations. If this is suspected, call CHN_Reset_memory
(Section 9.5) after performing the 1/0.
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Chapter
8

Charon provides a limited number of diagnostics and error modes that may help the programmer
debug application programs. Although the query functions listed in the previous chapters give
information on the components of all important data structures, it is often convenient to use
predefined functions that give a quick overview of entire data structures. These functions print
to standard output using a fixed layout. Only the processor whose rank is specified in the

parameter list is printed.

int CHN_Print_grid_info(int grid, int rank)
CHN_PRINT_GRID_INFO(grid, rank, ierr)
integer grid, rank, ierr

IN grid handle to grid data structure
IN rank rank (within grid) of processor that prints the information

int CHN_Print_section_info(int section, int rank)
CHN_PRINT_SECTION_INFO(section, rank, ierr)
integer section, rank, ierr

IN section handle to section data structure
IN rank rank (within grid) of processor that prints the information

int CHN_Print_decomposition_info(int decomposition, int rank)
CHN_PRINT_DECOMPOSITION_INFO(decomposition, rank, ierr)
integer decomposition, rank, ierr

IN decomposition handle to decomposition data structure
IN rank rank (within grid) of processor that prints the information

int CHN_Print_distribution_info(int distribution, int rank)
CHN_PRINT_DISTRIBUTION_INFO(distribution, rank, ierr)

IN distribution handle to distribution data structure
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IN rank rank (within grid) of processor that prints the information

All true Charon procedures return error codes (see the Index). A brief message describing the
error can be obtained using function CHN_Print_error, which is modeled after the MPI function
MPI_Error_string. This function copies the error message into the variable string, and also
returns the number of characters in the message (excluding any string termination character).
The user needs to reserve enough space to accommodate the message, whose size is guaranteed
not to exceed CHN_MAX_ERROR_STRING.

int CHN_Print_error(int err_no, char *string, int *resultlen)
CHN_PRINT_ERROR(err_no, string, resultlen, ierr)
integer err_no, resultlen, ierr

IN err_no error code for which information is requested
OUT string string containing error information
0UT resultlen actual number of characters in message

At any time the programmer can request information on total number of effective assignments
done through CHN_Assign (i.e. assignments to actual local addresses), total number of broadcast
operations completed to satisfy implicit and explicit remote data requests, and total number of
bytes broadcast in the process. The corresponding functions are CHN_Num_assigned, CHN_Num_
bcasts, CHN_Num_bytes_bcast, and CHN_Num_bytes_allocated, respectively. In addition,
the programmer can obtain the number of MPI send and receive calls issues by Charon func-
tions, and the total number of bytes involved in these respective operations. The corresponding
functions are CHN_Num_sends, CHN_Num_recvs, CHN_Num_bytes_sent, and CHN_Num_bytes_
recvd. These functions have no error return values.

Another diagnostic is the amount of space in bytes currently allocated as buffer space.
As explained in Sections 4.2 and 9.5, Charon manages two types of buffer space (CHN_TEMP_
MEMORY and CHN_MVALUE_MEMORY, and both can be queried separately, using CHN_Num_bytes_
allocated.

int CHN_Num_assigned(void)
integer function CHN_NUM_ASSIGNED()

int CHN_Num_bcasts(void)
integer function CHN_NUM_BCASTS()

int CHN_Num_bytes_bcast(void)
integer function CHN_NUM_BYTES_BCAST()

int CHN_Num_sends(void)
integer function CHN_NUM_SENDS ()

int CHN_Num_bytes_sent (void)
integer function CHN_NUM_BYTES_SENT ()

int CHN_Num_recvs(void)
integer function CHN_NUM_RECVS()
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int CHN_Num_bytes_recvd(void)
integer function CHN_NUM_BYTES_RECVD()

int CHN_Num_bytes_allocated(int alloc_type)

integer function CHN_NUM_BYTES_ALLOCATED(alloc_type)
integer alloc_type

Error return value: Greatest representable negative integer

IN alloc_type CHN_TEMP_MEMORY or CHN_MVALUE_MEMORY

It is possible that a (pseudo-)collective Charon function will fail on some, but not all, nodes
of its communicator. For example, when writing a distributed array to a file, only one node
claims space for the output buffer, and this memory allocation may fail, causing the processor
to abort the write operation with a non-trivial error code. Intercepting such errors would require
broadcasts at every potential asymmetrical point of failure, which would be prohibitively time-
consuming. Moreover, since Charon has been constructed with speed in mind, processors that
are not actually involved in a certain operation—mostly communications—may skip it, so they
would not be able to participate in broadcasts of error conditions. It was therefore decided to
allow a failing Charon program to deadlock in some cases when processors that are unaware of a
remote error condition try to communicate with the offending processor. If a Charon function is
suspected of creating such a situation, the programmer can force the program to abort at any—
even relatively benign—error by setting the error mode to CHN_FATAL. The library will attempt
to print an error message and signal all processors in MPI_COMM_WORLD to exit gracefully. Setting
the error mode to CHN_SERIQUS prints the same error message, but will not cause the program
to stop, unless the error is catastrophic. Finally, the programmer may set the error mode to
CHN_SILENT (the default) to suppress all error messages.

int CHN_Set_error_mode(int mode)
CHN_SET_ERROR_MODE (mode, ierr)
integer mode, ierr

IN mode error reporting mode: CHN_SILENT, CHN_SERIQUS, or CHN_FATAL
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Chapter
9

Special topics

In this chapter we discuss certain features of the Charon library that may enhance performance,
and that make it possible to accommodate a wider range of common coding practices in scientific
programs (mostly in Fortran).

9.1 Overindexing

Performance of vector computers can often be improved by increasing the length of vectorizable
loops. This provides higher utilization of vector registers, and higher computational throughput.
In the case of nested loops, only one loop structure—the innermost—can generally be vectorized.
Whereas optimizing compilers can often restructure loop nests to make sure that the inner loop
is indeed vectorizable, they can usually not increase its length.

In scientific applications on structured grids, the length of the loop in a loop nest is usually
dictated by the size of the grid in the corresponding coordinate direction. Hence, it would appear
that the programmer cannot influence the length of vectorizable loops either, unless the grid size
is changed as well. Adept Fortran programmers have gotten around this problem by exploiting
the weak type checking of most compilers. A Fortran 77 program is incorrect, strictly speaking,
if the number and extent of the array dimensions of formal and actual parameters of a subroutine
or function differ. But if formal and actual parameters are defined in different files, compilers
usually cannot detect index mismatches. Even if they can, most do not issue an error.

A programmer can therefore pass, for example, as an actual parameter an array with three
indices to a subroutine expecting a one-dimensional array. Like the Charon distribution data
structure, the Fortran dimension statement in the subroutine offers a structuring interpretation
of the memory space pointed to by the (first element of) the actual parameter. If so desired,
the programmer can change the number and extent of the dimensions of the actual parameter
inside the subroutine. This technique, when applied to merge several of the leading indices of a
multi-dimensional array to create a lower-dimensional array with increased leading dimension, is
called overindexing.
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In the following example, the subroutines using overindexing are functionally equivalent to
that written in the canonical form. But they may obtain significantly higher speed on a vector
computer, because of the increased lengths of their inner loops.

real a(nx,ny,0:nz+1), b(nx,ny,nz)

call avg_canonical(a,b,nx,ny,nz)
call avg_overindexl(a,b,nx,ny,nz)
call avg_overindex2(a,b,nx,ny,nz)

subroutine avg_canonical(a,b,nx,ny,nz)
real a(nx,ny,0:nz+1), b(nx,ny,nz)

do k=1, nz
do j =1, ny
do i=1, nx
b(i,j,k) = 0.5%(a(i,j,k+1)+a(i,j,k-1))
end do
end do
end do
return
end

subroutine avg_overindexl(a,b,nx,ny,nz)
real a(nx#*ny,0:nz+1), b(nx*ny,nz)

do k=1, nz
do ij =1, nx*ny
b(ij,k) = 0.5%x(a(ij,k+1)+a(ij,k-1))
end do
end do
return
end

subroutine avg_overindex2(a,b,nx,ny,nz)
real a(nx#*ny,1,0:nz+1), b(nx*ny,1,nz)

do k=1, nz
do ij =1, nx*ny
b(ij,1,k) = 0.5%(a(ij,1,k+1)+a(ij,1,k-1))
end do
end do
return
end

Routine avg_overindex1 merges the second of the original array subscripts with the first, and
drops it in subsequent array references. Routine avg_overindex2 does the same, but effectively
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retains the second subscript with a dummy array dimension of size one. Notice that we cannot
also merge the third array subscript, because of the shifts applied to it.

Charon supports the form of merging of array subscripts exemplified by avg_overindex1,
through function CHN_Set_num_fused_subscripts. That is, we may specify for a distribution
a number of leading array subscripts to be fused, and subsequently drop reference to the fused
subscripts from CHN_Address and CHN_(M)Value parameter lists. Leading subscripts are those
with the smallest memory stride (leftmost in Fortran, rightmost in C). Fused subscripts may be
grid indices, tensor indices, or a mixture of both.

int CHN_Set_num_fused_subscripts(int distribution, int num_fused)
CHN_SET_NUM_FUSED_SUBSCRIPTS(distribution, num_fused, ierr)
integer distribution, num_fused, ierr

INOUT distribution handle to distribution data structure
IN num_fused number of leading subscripts to be fused

Below we show how the overindexed code on page 90 can be written in Charon. Unlike in
the serial code, it is not necessary to use the subroutine interface to redimension the distributed
variables (but it is allowed, of course).

call CHN_SET_NUM_FUSED_SUBSCRIPTS(a_,1,ierr)
call CHN_SET_NUM_FUSED_SUBSCRIPTS(b_,1,ierr)

do k=1, nz
do ij =1, nx*ny
call CHN_ASSIGN(CHN_ADDRESS(b_,ij,k),0.5*(CHN_REAL_VALUE(a_,ij,k+1)+
$ CHN_REAL_VALUE(a_,ij,k-1)),ierr)
end do
end do
return
end

Careful attention should be given to the value of num_fused. It refers to the number of
subscripts that will be dropped after merging with the leading subscript. Hence, a value of
one for num_fused means that subscript one will be fused with subscript zero (the leftmost in
Fortran). Fusing subscripts does not change the position of any of the data elements related to a
distribution, but only influences how positions are computed from lists of subscripts. Adjacency
in memory of array elements in a serial code is usually not preserved in a code distributed using
Charon (nor in other parallelization packages, for that matter), so a mechanism is needed to
infer from a list of subscripts what is the corresponding grid point and tensor component. This
mechanism is provided by CHN_Set_num_fused_subscripts. Resetting the number of fused
subscripts to zero is performed by CHN_Unset_fused_subscripts. The query function CHN_
Num_fused_subscripts returns, for a given distribution, the number of subscripts that have
been fused.

int CHN_Unset_fused_subscripts(int distribution)
CHN_UNSET_FUSED_SUBSCRIPTS(distribution, ierr)
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integer distribution, ierr

INOUT distribution handle to distribution data structure

int CHN_Num_fused_subscripts(int distribution)

integer function CHN_NUM_FUSED_SUBSCRIPTS(distribution)
integer distribution

Error return value: —1

INOUT distribution  handle to distribution data structure

Although overindexing is not very commonly used in C, it is also defined for that language.
Needless to say, subscript fusing in Charon does not lead to improved performance on vector
machines. The overhead incurred by Charon’s global access functions (CHN_Address, etc.)
completely annihilates any possible performance gain. Moreover, array elements that are adjacent
in a serial code need not be adjacent (or even on the same processor) in a distibuted code, nor at
a constant stride, so vectorizability is virtually destroyed. Instead, subscript fusing is used simply
as a convenience to support legacy code practices. In an optimized parallel program the only
overindexing used will bypass the Charon interface.

9.2 Subscript reduction

It is often convenient to drop trailing subscripts (rightmost in Fortran, leftmost in C) of an array
if they are to be kept constant during a significant portion of the computation. Assignments and
evaluation can then use arrays with fewer subscripts, which may increase program clarity and may
simplify subscript computations for the compiler.

This type of subscript reduction should not be confused with using a lower-dimensional scratch
array (see Section 3.5.3), since each distinct set of dropped (‘frozen’) trailing subscripts corre-
sponds to a different subset of the space occupied by the original fully-subscripted array. An
example will clarify the difference.

real a(nx,ny,nz), b(nx,ny,nz), scratchl(nx,ny), scratch2(nx,ny)
do k=1, nz

¢ for every k a different slice of a and b is accessed
call loop2d(a(1,1,k),b(1,1,k),nx,ny)

¢ each value of k uses the same space in the scratch arrays
do j =1, ny
do i=1, nx
scratchl1(i,j) = a(i,j,k)
end do
end do
call loop2d(scratchl,scratch2,nx,ny)
¢ must copy changed data from scratch array
do j =1, ny
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at

do i=1, nx
b(i,j,k) = scratch2(i,j)
end do
end do
end do

subroutine loop2d(a2d,b2d,nx,ny)
real a2d(nx,ny), b2d(nx,ny)

do j =2, ny-1
do i =2, nx-1
b2d(i,j) = -4.0*a(i,j)+a(i+1,j)+a(i-1,j)+a(i,j+1)+a(i,j-1)
end do
end do
return
end

The function CHN_Set_fixed_subscripts is used to freeze a number of trailing subscripts
constant values and henceforth drop them from parameter lists in the global access functions

(CHN_Address, etc.). The set of frozen subscripts may be spatial indices, tensor indices, or a

mi

xture of both. Of course, we may only specify legal values for these subscripts. We note that

trailing subscripts are those with the largest array stride (rightmost in Fortran, leftmost in C).

int CHN_Set_fixed_subscripts(int distribution, int num_fixed, ...)

CHN_SET_FIXED_SUBSCRIPTS(distribution, num_fixed, sbsO, sbsl, ..., ierr)
integer distribution, num_fixed, sbsO, sbsl, ..., ierr

INOUT distribution handle to distribution data structure

IN num_fixed number of subscripts to be frozen

IN sbsO value of leading subscript to be frozen

IN sbs1 value of next-higher-stride subscript to be frozen

IN values of subsequent subscripts to be frozen

Note that the values of the frozen subscripts are listen in order of increasing memory stride

(left to right in Fortran, right to left in C). Fixing trailing subscripts and fusing leading subscripts

Ca
an

n be applied to the same distribution, as long as there is at least one free subscript left. As
example we show how the first part of the above serial code fragment can be written using

Charon functions. Again, no subroutine interface is required to re-index the distributions.

do k=1, nz

call CHN_SET_FIXED_SUBSCRIPTS(a_,1,k,ierr)
call CHN_SET_FIXED_SUBSCRIPTS(b_,1,k,ierr)

do j =2, ny-1
do i =2, nx-1
call CHN_ASSIGN(CHN_ADDRESS(b_,i,j),-4.0*CHN_REAL_VALUE(a_,i,j)+
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$ CHN_REAL_VALUE(a_,i+1,j)+CHN_REAL_VALUE(a_,i-1,j)+
$ CHN_REAL_VALUE(a_,i,j+1)+CHN_REAL_VALUE(a_,i,j-1),ierr)
end do
end do
end do

Resetting the number of frozen subscripts to zero is accomplished by the function CHN_Unset_
fixed_subscripts. The query functions CHN_Num_fixed_subscripts and CHN_Fixed_subscript
return for a given distribution the number of frozen subscripts, and the actual value of a frozen
subscript, respectively. In the latter case the sequence number of the frozen subscript must be
specified relative to the first frozen subscript, not the first subscript of the original distribution.

int CHN_Unset_fixed_subscripts(int distribution)
CHN_UNSET_FIXED_SUBSCRIPTS(distribution, ierr)
integer distribution, ierr

INOUT distribution handle to distribution data structure

int CHN_Num_fixed_subscripts(int distribution)

integer function CHN_NUM_FIXED_SUBSCRIPTS(distribution)
integer distribution

Error return value: —1

IN distribution handle to distribution data structure

int CHN_Fixed_subscript(int distribution, int index)

integer function CHN_FIXED_SUBSCRIPT(distribution, subscript)
integer distribution, subscript

Error return value: greatest representable negative integer

IN distribution handle to distribution data structure
IN subscript sequence number of subscript within list of frozen subscripts

9.3 Communication caching and optimization

The communication functions CHN_Copy_faces, etc., discussed in Chapter 6, are capable of
complex data rearrangements and transfers. They act on distributions of arbitrary tensor rank,
spatial dimension, number of ghost points, cell ownership pattern. Some special cases are recog-
nized, such as the predefined uni-, multi-, and solo-partitions, and the communications procedures
involving them have been optimized to take advantage of their known structure. In general, how-
ever, the determination of what data needs to be copied and which processors should send and
receive requires a nontrivial amount of logic.

Most scientific computing programs on structured grids consist of large numbers of iterations
during which essentially the same operations are applied to the base data set. Hence the overhead
of setting up complicated communications could be amortized over the course of the computa-
tion if somehow the data structures related to the communications could be stored instead of
recomputed each time. In other words, performance improvement might be obtained through
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communication caching. This is indeed possible in Charon, through the functions CHN_Begin_
remember and CHN_End_remember. They are invoked with a unique, user-supplied integer key,
and are placed (logically) before and after the communication operation to be cached. They can
therefore be viewed as caching brackets.

int CHN_Begin_remember (int key)
CHN_BEGIN_REMEMBER (key, ierr)
integer key

int CHN_End_remember (int key)
CHN_END_REMEMBER (key, ierr)
integer key

IN key unique, user-supplied, non-negative integer

The programmer can 'forget’ a caching bracket corresponding to a specific key by invoking
CHN_Delete_key. This function releases any memory claimed to save the data structures related
to the bracket and makes the key available again for other communication caching. It should not
be called inside another communication bracket.

int CHN_Delete_key(int key)
CHN_DELETE_KEY (key, ierr)
integer key, ierr

IN key unique, user-supplied, non-negative integer

Charon caching brackets work as follows. Upon first entry to the bracket, the key is recognized
as not in use, and an entry is created for it in a table of keys. Next, the regular communication
operation is carried out, but a record is kept of all atomic operations involved, until the CHN_End_
remember function is called (using the same key value). This record is linked to the key. Upon
subsequent entries to the bracket, CHN_Begin_remember recognizes the key as previously defined,
the corresponding record is retrieved, and its atomic operations are carried out at high speed.
The original bracketed communication, with all its tests and logic, becomes a void operation.
An implication of this technique is that once the bracket has been initialized, it can be used
in other parts of the code, even without including the original communication, but only if all
the parameters of the communication are exactly the same. Another implication is that caching
brackets cannot be nested.

Charon communication caching is different from that provided by MPI for asynchronous,
nonblocking communications (where it is called a persistent communication request) in three
respects.

First, no initialization is necessary. Recall that in MPI a persistent communication request is
created by a call to MPI_Send_init or MPI_Receive_init, which returns a handle to an MPI_
Request data structure. This handle is used in subsequent calls to MPI_Start and MPI_Wait
to commence and finalize a communication. As a consequence, the MP| programmer wishing
to convert a regular communication into a persistent request needs to isolate the concerned
communication from an iterative code segment to create the request exactly once, whereupon it
can be used repeatedly. This implies a sometimes cumbersome change in program structure.
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Charon caching brackets, however, can be inserted in the program in the location desired,
without any additional change. The user is responsible for providing a unique, positive integer to
be used as a key. This may conflict with the keys used inside libraries, so it is generally safer for the
programmer to obtain an unused key value from Charon through the function CHN_Unused_key.
Keys obtained through this function are numbered CHN_MIN_SYSTEM_KEY and up.

int CHN_Unused_key(void)
integer function CHN_UNUSED_KEY()
Error return value: none

The second difference between Charon and MPI communication caching lies in the execution
modes. Creating a persistent communication request is a local, non-collective operation, and a
regular communication request on one processor can safely be matched by a persistent commu-
nication request on another. Charon caching brackets are local, but collective. They must be
used on all processors involved in the communication, although the keys need not be identical
on all processors. The reason for this is that Charon may reorder and merge some of the stored
atomic operations of the communication in order to improve performance. If this optimization
takes place on some processors, but not all, deadlock or—possibly fatal—execution errors may
result.

The third respect in which Charon communication caching differs from persistent communi-
cation requests is that a single pair of caching brackets may enclose multiple Charon commu-
nications. All atomic operations occurring within the communications between the brackets are
strung together, and are executed at high speed upon the next entry to the bracket. This saves
the programmer from having to define a different key for every communication in a frequently
recurring sequence of operations. It also allows Charon to optimize across a larger number of
atomic operations, potentially leading to significant performance improvement.

Consider, for example, several consecutive calls to CHN_Copy_faces_all, involving different
distributions based on the same decomposition. This would ordinarily trigger multiple commu-
nications between the same sender and receiver. They may be merged (i.e. messages may be
aggregated) if they are enclosed in the same caching bracket. Any sequence of Charon communi-
cations can be contained in a single pair of caching brackets, but only atomic operations involving
the same elementary data type can be merged.

Other operations, including user-functions, other Charon functions, arithmetic operations,
and MPI communications, may be enclosed within caching brackets, but this practice should be
avoided. Even without optimization, Charon may reorder statements, because upon the second
entry to the bracket, all atomic operations relating to the Charon communications will be executed
first, even if in the original logic these communications were interspersed with other operations.
An example of communication caching is shown in the the pipeline code on page 105.

If an error occurs in a Charon function inside a caching bracket while it is being defined,
the entire bracket is marked as dead, even though some other functions inside the bracket may
complete successfully. Subsequent entry into a dead bracket will cause Charon to skip all the
functions inside silently.
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9.4 Shared solo-partition decomposition

One of the foundations of Charon is that a point in a grid has exactly one owner processor.
The functions defined in Section 3.3 make sure that each Cartesian-product subset of the grid is
assigned to a unique processor. However, there is one situation in which it is advantageous to
have the Cartesian subsets shared among all processors. That is when a programmer wishes to
switch between serial and parallel processing within a single program in the course of converting
a serial code (see Section 10.1.2). The Charon function that creates a shared decomposition out
of a section data structure is CHN_set_sharedpartition_owners.

int CHN_Set_sharedpartition_owners(int decomposition)
CHN_SET_SHAREDPARTITION_OWNERS (decomposition, ierr)
integer decomposition, ierr

INOUT decomposition handle to decomposition data structure

There is only one type of Charon section that is eligible for sharing, and that is the solo-
partition section (single cell). The only allowable operation on distributions defined on a shared-
partition decomposition is redistribution. The result of mapping any regular distribution to a
shared-partition distribution is the same as that of mapping to a distribution based on a solo-
partition decomposition (single owner), except that now all processors receive the same data;
it is broadcast to all processors in the communicator. The advantage is that all processors can
henceforth execute serial code, so that it is not necessary to exclude any processors, as would
have to be the case if a solo-partition decomposition were used.

The result of mapping a shared-partition distribution to a regular distribution is identical to
that of mapping a solo-partition distribution owned by processor zero to the regular distribution.
Since serial code does not make use of the processor number, all processors perform the same
operations on data contained in the shared-partition distribution. Therefore it does not make a
difference which processor furnishes the data for redistribution to a regular distribution.

9.5 Temporary memory allocated

Charon communication functions use temporary memory that is allocated by a fast special-purpose
scheme. The allocation strategy is based on the premise that many applications for which Charon
is useful are iterative, and that the same communication functions are called many times. Rather
than allocating and deallocating all the time, Charon keeps track of the exact amount of temporary
memory needed at any one time in the program. If that amount is less than the temporary memory
allocated earlier (and no longer in use), then that buffer will be reused. If the amount is more than
was allocated before, the previous buffer is released and a new one is allocated. Consequently,
while the temporary memory allocated never grows to a size larger than is required by the most
demanding Charon communication function, it is never permanently released by the library. If
storage is at a premium the user can release the buffer space explicitly by using CHN_Release_
memory and specifying the type of memory involved: CHN_TEMP_MEMORY. This has no influence
on the correctness of the code, and is not very expensive.

Another type of system-allocated memory relates to CHN_Mvalue. As explained in Section 4.2,
this type of memory is not volatile and does not get reused. It has to be released explicitly if the
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contents is no longer needed and the programmer wishes to free the space. This is accomplished
by calling CHN_Release_memory and specifying the type of memory involved: CHN_MVALUE_
MEMORY. The result is that all buffers claimed by function CHN_Mvalue are released.

int CHN_Release_memory(int alloc_type)
CHN_RELEASE_MEMORY (alloc_type, ierr)
integer alloc_type, ierr

IN alloc_type buffer type: CHN_TEMP_MEMORY or CHN_MVALUE_MEMORY



Chapter
10

Programming examples

10.1 General programming tips

Charon offers a powerful set of functions for manipulation of distributed variables. Some pro-
gramming techniques emerge from experience that make these functions easier to use, and that
expedite parallel program development and conversion.

10.1.1 Aliases

Many Charon functions have rather long names, and sometimes carry more arguments than
is desirable for program clarity. Aliases may be defined that shorten names and parameter lists.
These are especially useful for the most occurring Charon functions,namely those of CHN_Assign,
CHN_Address, and CHN_<type>_value. Since they will be removed from the final program text
anyway, performance of the tuned program is not affected by introduction of a set of wrapper
routines. We present two types of handy wrapper routines in Fortran. They both assume that
all user definitions of distributed variables have been placed in common blocks in a header file
named my_pars.incl. In C macros may be utilized that do not add any overhead.

1. For each distributed variable v1_ occurring on the left hand side of an assignment state-
ment, introduce a subroutine assign_v1. Assuming the single precision variable has three
subscripts, define the subroutine as follows.

subroutine assign_v1(i,j,k,val)
include ’my_pars.incl’

integer i, j, k, ignore_error
real val

call CHN_Assign(CHN_Address(vl_,i,j,k),val,ignore_error)

return
end

99
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2. For each distributed variable vr_ whose value is needed in an expression, introduce a
function vr_val. Assuming that the single precision variable also has three subscripts,
define the function as follows.

real function vr_val(i,j,k)
include ’my_pars.incl’
integer i, j, k

vr_val = CHN_REAL_VALUE(vr_,i,j,k)
return
end

Using such definitions, the first version of the Charon code implementing the 3D seven-point
star stencil computation on page 58 can be written in a significantly terser form, which is also
closer to the original serial version. Evidently, savings would be greater when dealing with double
precision variables.

do k = 2, nsize(2)-1
do j = 2, nsize(1)-1
do i = 2, nsize(0)-1
call assign_r(i,j,k, -6.0%a_val(i,j,k) + a_val(i+l,j,k)+

$ a_val(i-1,j,k)+ a_val(i,j+1,k)+
$ a_val(i,j-1,k)+ a_val(i,j,k+1)+
$ a_val(i,j,k-1))
end do
end do
end do

10.1.2 Serial-parallel adaptors

Often it is convenient to leave the bulk of a legacy code in serial mode while concentrating on
distributing and parallelizing only one or a few modules at a time. This can be accomplished, as
was detailed in Section 6.1.2, using the redistribution facility within Charon. For each distributed
variable two distributions are defined. One features the target multi-owner decomposition (e.g.
dmo_), the other a single-owner solo-partition decomposition (e.g. dso_) whose layout corresponds
to that of the legacy code. A convenient pair of adaptor functions can now be defined as follows,
assuming, as before, that all user definitions of distributed variables have been placed in common
blocks in a header file named my_pars.incl.

subroutine begin_distributed
include ’my_pars.incl’
integer ignore_error

call CHN_REDISTRIBUTE(dmoO_,dso0_,ignore_error)
call CHN_REDISTRIBUTE(dmol_,dsol_,ignore_error)
call CHN_REDISTRIBUTE(dmo2_,dso2_,ignore_error)
call CHN_REDISTRIBUTE(dmo3_,dso3_,ignore_error)
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call CHN_REDISTRIBUTE(dmo4_,dso4_,ignore_error)

return
end

subroutine end_distributed
include ’my_pars.incl’
integer ignore_error

call CHN_REDISTRIBUTE(dsoO_,dmo0O_,ignore_error)
call CHN_REDISTRIBUTE(dsol_,dmol_,ignore_error)
call CHN_REDISTRIBUTE(dso2_,dmo2_,ignore_error)
call CHN_REDISTRIBUTE(dso3_,dmo3_,ignore_error)
call CHN_REDISTRIBUTE(dso4_,dmo4_,ignore_error)

return
end

If a certain code fragment in the middle of the program needs to be parallelized, it is simply
bracketed by calls to begin_distributed and end_distributed. The only caveat is that,
upon return to serial mode, only one processor—the owner of the only cell in the solo-partition—
owns useful data created in the parallel section. Hence, other processors should not execute
any serial code that may create arithmetic exceptions or other failures due to inconsistent data.
This situation can be avoided by making sure that all processors receive the same data upon
entering the serial mode. This is accomplished by using function CHN_Set_sharedpartition_
owners to define a special, restricted decomposition whose cells are owned by all processors in
the communicator (see Section 9.4).

10.2 Multiple topologically independent grids

Charon helps the user manage the distribution aspects of structured grids within communica-
tion domains (MPI communicators). Sometimes it is desirable to define several topologically
independent grids, each with their own communication domain. Charon does not support com-
munications between such domains directly; implicitly invoked as well as explicit communications
are restricted to the communicators specified in the CHN_Create_grid call.

This is usually the behavior the user wants, because it allows modular program development,
and limits interference between processors working on different grids. Data exchange between
processors in these domains is possible, though, using so-called MPI intercommunicators.

Assume that there are two domains, dom0 and doml, and information pertaining to a set
of points in a grid in dom0 needs to be used in computations on a grid in dom1, for example
to provide interpolated values. The data can be accumulated on one or more processors in
doml through CHN_Get_tile, sent to one or more processors in dom2 through a regular MPI
communication using the appropriate intercommunicator, and placed in a distributed variable in
dom?2 through CHN_Put_tile. If the data is very irregularly distrbuted across the grid, tiles may
not be the best mechanism, and individual data items would have to be placed in and copied
from buffers, possibly using Charon query functions to optimize locality.
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10.3 Pipelined algorithms

Pipelining is a generally applicable technique for extracting parallelism from scientific problems
with difficult data dependencies. It is a truly non-data-parallel concept, and therefore cannot be
expressed in systems that only allow data parallel program specifications. We take as an example
application the Gauss-Seidel relaxation technique for solving the heat equation on a uniform grid
of nixnj points.

The method can be summarized as follows. For each point in the grid, replace the value
of the temperature T by the average temperature of its four closest neighbors, always using the
latest updated values available. Temparatures on the boundaries are kept fixed. The result of
this relaxation depends on the order in which points are visited. It can be made unambiguous
by requiring that no point gets updated before its neighbors whose coordinates are smaller than
or equal to the target point's coordinates are updated. The simplest scheme satisfying this
requirement visits points in the canonical lexicographical order, as exemplified by the following
code.

do j=2, nj-1
do i=2, ni-1
T(i,j) = 0.25%(T(i+1,j)+T(i,j+1)+T(i-1,3j)+T(i,j-1))
end do
end do

Data parallel implementations of this algorithm have difficulty extracting parallelism, because
there is a strong data dependence. The wavefront method proposed by Lamport [17] rearranges
the computions such that all points on a diagonal line (a wavefront) defined by i+j=constant
can be updated independently (and hence simultaneously). We will assume that ni < nj. Here
is the serial program.

c loop over the number of diagonals (wavefronts) in the grid
do dg=4, ni+nj-2
¢ must determine extremal points of the diagomal
if (dg .le. ni+l) then
istart = 2
iend = dg
elseif (dg. le. nj+1) then
istart = dg-ni+l

iend = dg
else
istart = dg-ni+i
iend = ni-1
endif
do i = istart, iend
j = dg-i
T(i,j) = 0.256%(T(i+1,3j)+T(i,j+1)+T(i-1,3)+T(i,j-1))
end do

end do
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Figure 10.1: Wavefront and pipeline techniques for implementing Gauss-Seidel relaxation method

A graphical representation of the progressing wavefront is shown in Figure 10.1.1. Diagonal
lines are the wavefronts, which are updated in the order indicated by the direction of the open
arrow. Whereas this technique manages to create an inner loop whose iterations are independent
of each other (important for vector machines), it suffers from several defects when applied as a
vehicle for parallelization.

First, the length of the inner loop varies during the sweep across the grid, and with it also the
amount of extractable parallelism. This induces a load imbalance. Second, the maximum number
of processors that can be active at any one time equals ni-2 (the maximum number of points
on a wavefront). The theoretically maximum efficiency of the method is further compromised
if a realistic domain decomposition is chosen that minimizes the ratio of interior to boundary
points for each cell. For example, if the grid is divided into strips, as indicated in Figure 10.1.1,
processors owning cells near the i-axis will run out of computational work long before the last
processor has finished. This effect would be exacerbated by a decomposition into squares instead
of into strips.

A better solution is to pipeline the process. Refer again to the stripwise decomposition of
the domain (Figure 10.1.2). The first processor updates all points it owns on the first grid line.
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Once the last point on the line segment is updated, it transmits that value (curved arrow) to
the processor owning the adjacent strip, which can then start computations. Meanwhile, the
first processor starts work on the next grid line. After a while, all processors will be active, each
working on different grid lines; the pipeline is filled. Figure 10.1.2 shows the status of the full
pipeline after six successive line segments have been updated by the first processor.

The difficulty in devising automatic parallelizing compilers that efficiently implement pipelines
lies is the choice of the proper granularity. The above process works properly and exhibts a
fully balanced load once the pipeline is full. But if there are not many points on each grid line
segment, very frequent communications are needed. In that case if may be better to group a
number of line segments together and postpone communications until all segments in a group
have been updated. The number of line segments in a group is called the pipeline group factor.
While the programmer often has a good grasp of what is a reasonable group factor, compilers
have a hard time guessing it [13]. Charon helps the user to program pipelines explicitly, with
relatively little effort. We will assume that the group factor igrp, set by the programmer, evenly
divides the number of interior grid points in the first coordinate direction. Otherwise, some simple
preconditioning would be necessary.

Here is the first distributed version of the code for the pipelined algorithm. We assume that the
decomposition on which distribution T_ is based is called dcmp. Even though no communications
are required, we structure the code such that the points are accessed similar to the way they will
be in the parallel code. But, of course, we cannot indicate concurrency in a serial code.

¢ loop over all strips
do c = 0, CHN_total_num_cells(dcmp)-1
do grp = 1, ni/igrp
istart = 2+(grp-1)*igrp

iend = istart + igrp-1
do j=max(2,CHN_CELL_START_INDEX(dcmp,1,c)),
$ min(nj-1,CHN_CELL_END_INDEX(dcmp,1,c))

do i = istart, iend
call CHN_ASSIGN(CHN_ADDRESS(T_,i,j), 0.25%(CHN_REAL_VALUE(T_,i+1,j)+

$ CHN_REAL_VALUE(T_,i,j+1)+ CHN_REAL_VALUE(T_,i-1,j)+
$ CHN_REAL_VALUE(T_,i,j-1)), ierr)
end do
end do
end do
end do

Now make the communications explicit, so that broadcasts can be suppressed. At the same
time, we let only the processor that owns a grid point call the corresponding CHN_Assign routine.
The assignments are parallelized, but the communications and index calculations are not. Even
though in Fortran we could, in principle, still declare istart and iend as scalars, we choose to
dimension them as integer arrays of length 1. This highlights the fact that communication panels
are generally vectors, whose length is one less than the number of dimensions of the grid.

integer start(1), end(1)
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c make sure all ghost point values are initialized (old values)

istart(1) = CHN_ALL

iend (1) CHN_ALL

call CHN_COPY_FACES(T_,CHN_NONPERIODIC,1,CHN_ALL,1,CHN_LEFT,CHN_ALL,istart,
$ iend,ierr)

call MPI_Comm_rank (MPI_COMM_WORLD,my_rank,ierr)

call CHN_BEGIN_LOCAL (MPI_COMM_WORLD,ierr)
do ¢ = 0, CHN_total_num_cells(dcmp)-1
do grp = 1, (ni-2)/igrp
istart(1) = 2+(grp-1)*igrp
iend(1) = istart(1l) + igrp-1
if (CHN_OWNER(dcmp,c) .eq. my_rank) then
call CHN_BEGIN_GHOST_ACCESS(dcmp,c,ierr)
do j=max(2,CHN_CELL_START_INDEX(dcmp,1,c)),
$ min(nj-1,CHN_CELL_END_INDEX (dcmp,1,c))
do i = istart(1l), iend(1)
call CHN_ASSIGN(CHN_ADDRESS(T_,i,j), 0.25%(CHN_REAL_VALUE(T_,i+1,j)+

$ CHN_REAL_VALUE(T_,i,j+1)+ CHN_REAL_VALUE(T_,i-1,j)+
$ CHN_REAL_VALUE(T_,i,j-1)), ierr)
end do
end do
call CHN_END_GHOST_ACCESS(dcmp,c,ierr)
end if
o send latest data to next strip
call CHN_COPY_FACES(T_,CHN_NONPERIODIC,1,CHN_ALL,1,CHN_RIGHT,c,istart,
$ iend,ierr)
end do
end do

call CHN_END_LOCAL(comm,ierr)

The structured communications routines are called by all processors, to make sure that those
actively involved in sending and receiving data will be executing them. However, we know that
only one pair of processors actually needs to call each routine. The following variation reduces the
number of idle communication calls, skips the ownership tests, and simplifies the loop structure.
We also drop the calls to the global access functions and revert to local indexing (must use offset
gp to skip over ghost points). Communication caching is used to enable further optimzation (see
Section 9.3), assuming that the code fragment is executed many times in an iterative solver.

integer start(1), end(1), gp
parameter (gp=1)

c make sure all ghost point values are initialized (old values)
istart(1) = CHN_ALL
iend (1) CHN_ALL
call CHN_BEGIN_REMEMBER(123,ierr)
call CHN_COPY_FACES(T_,CHN_NONPERIODIC,1,CHN_ALL,1,CHN_LEFT,CHN_ALL,istart,
$ iend,ierr)
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call CHN_END_REMEMBER(123,ierr)

¢ = CHN_own_to_global_cell_index(dcmp,0)
do grp = 1, (ni-2)/igrp
istart (1) = 2+(grp-1)*igrp
iend (1) istart(1) + igrp-1
¢ make sure we receive latest data from previous strip; use unique caching key
call CHN_BEGIN_REMEMBER(123+2*grp,ierr)
call CHN_COPY_FACES(T_,CHN_NONPERIODIC,1,CHN_ALL,1,CHN_RIGHT,c-1,istart,
$ iend,ierr)
call CHN_END_REMEMBER(123+2*grp,ierr)
do jj=max(2,CHN_CELL_START_INDEX(dcmp,1,c)),
$ min(nj-1,CHN_CELL_END_INDEX(dcmp,1,c))
j=jj-CHN_CELL_START_INDEX(dcmp,1,c)+gp
do i = istart(1l)+gp, iend(1)+gp
T(i,j) = 0.26*%(T(i+1,j)+T(i,j+1)+T(i-1,3j)+T(i,j-1))
end do
end do
¢ send latest data to next strip; use unique caching key
call CHN_BEGIN_REMEMBER(123+2%grp+1,ierr)
call CHN_COPY_FACES(T_,CHN_NONPERIODIC,1,CHN_ALL,1,CHN_RIGHT,c,istart,
$ iend,ierr)
call CHN_END_REMEMBER(123+2%grp+1,ierr)
end do

10.4 Periodic solvers

In serial stencil-based programs periodic solvers are usually implemented by employing layers of
buffer points around the grid on which the solution is sought. Data from one side of the grid
is then copied to the opposite side, to reflect the periodicity. In parallel programs constructed
using Charon, the equivalent of buffer points is available through the ghost points. However,
ghost point values are not ordinarily available through the global access functions CHN_Address,
etc., until the programmer explicitly requests them using CHN_Begin_ghost_access. This is
undesirable during the initial phases of the parallel program development, because it involves
more coding and also requires making the domain decomposition visible.

The solution is for the user to define the initial Charon grid large enough to include any points
that are to serve as buffer points for the periodic solver. For example, in a periodic, 2D, five-
point-star stencil computation the grid would be padded with one point on each side (for a total
of two) in the direction of the periodicity(ies). This works fine, except that the speedy structured
communication functions that copy values between faces of cells (CHN_Copy_(ghost) _faces)
cannot be used directly. They move data into and out of ghost points managed by Charon, not
those managed by the programmer. So an additional copy of values from Charon-managed to
user-managed ghost points would have to follow, which reduces program efficiency.

A shortcut is obtained by using the argument CHN_PERIODIC_TRUNCATED instead of CHN_
PERIODIC in the copy operation. For a copy operation defined with thickness d this has exactly
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Figure 10.2: Copying periodic cell face values with (bottom) and without (top) truncation for a
distribution with two ghost points

the same effect as if the outermost d points of the grid in the coordinate direction of the copy
operation (both sides) had been Charon ghost points. Figure 10.2 shows the difference between
plain (Tableau a.) and truncated (Tableau b.) periodic data movements for copy operations
in the second coordinate direction (cf. Figure 6.2). Because the copying of interior cell faces is
not affected by the setting of the periodicity parameter, we merely show the copy result for a
solo-partition decomposition. The example distribution has been defined with two ghost points
(none are required by the truncated copying).

Truncation only affects the apparent size of the grid in the copy direction. If a problem is
periodic in multiple directions, the user may want to restrict the copy panel (see Section 6.1.1) to
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exclude those points that fall outside the truncated grid in directions normal to the copy direction.

10.4.1 Explicit periodic boundary conditions

Point-relaxation schemes, such as the point-Gauss-Seidel or point-Jacobi iterative methods, are
primarily used for their computational simplicity and efficiency. Save for data dependencies that
sometimes complicate parallel implementations, they are as straightforward as explicit methods.
This simplicity would be ruined by insisting on an implicit implementation of periodic boundary
conditions. More often, periodic boundary conditions are implemented explicitly; boundary values
are updated independently on one side of the domain, and copied to the other side.

Consider again the point-Gauss-Seidel problem of Section 10.3. We modify it to be periodic
in the j-direction. The grid size is again nixnj points, but now the first and last points in the
j-direction are assigned to user-managed buffer duty. We will assume that the periodic boundary
corresponds to the grid lines j=1 and j=nj-1'.

The algorithm proceeds as indicated schematically in Figure 10.3. Before updating interior grid
points, copy data from the right periodic boundary to the left (phase 1), using CHN_PERIODIC_
TRUNCATED. The left boundary now consists of user-managed buffer points, while the right does
not, so CHN_Copy_faces is the appropriate communication function. Subsequently, update
interior points in exactly the same way as in the non-periodic case—including pipelining and
copying of data across interior cell faces—but exclude the points on the right periodic boundary
(phase 2).

After all interior points have been updated, copy data from the line immediately adjacent to
the left periodic boundary (line j=2) to the corresponding points on the opposite side of the grid
(phase 3). The source points are now truly interior, and the destination consists of user-managed
buffer points, so the appropriate communication function is CHN_Copy_ghost_faces. Finally,
update the points on the right periodic boundary, using the data that has just been copied (phase
4).

Below we present the Charon code that implements this solver for the stripwise decomposition
of Section 10.3.

integer start(1), end(1), gp
parameter (gp=1)

c make sure all ghost point values are initialized (old values)
istart(1) = CHN_ALL
iend(1) = CHN_ALL
call CHN_COPY_FACES(T_,CHN_NONPERIODIC,1,CHN_ALL,1,CHN_LEFT,CHN_ALL,istart,
$ iend,ierr)

c copy values to the left periodic boundary
call CHN_COPY_FACES(T_,CHN_PERIODIC_TRUNCATED,1,CHN_ALL,1,CHN_RIGHT,-1,istart,
$ iend,ierr)

11t is equally well possible to let the periodic boundary correspond to lines j=2 and j=nj. The reader is invited
to verify that this can also be parallelized easily, using essentially the same Charon functions.
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Figure 10.3: Using TRUNCATED copying to implement periodic point-Gauss-Seidel relaxation
method

¢ update interior points
¢ = CHN_own_to_global_cell_index(dcmp,0)
do grp = 1, (ni-2)/igrp
istart (1) = 2+(grp-1)*igrp
iend(1) istart(1) + igrp-1
¢ make sure we receive latest data from previous strip
call CHN_COPY_FACES(T_,CHN_NONPERIODIC,1,CHN_ALL,1,CHN_RIGHT,c-1,istart,
$ iend,ierr)
do jj=max(2,CHN_CELL_START_INDEX(dcmp,1,c)),
$ min(nj-2,CHN_CELL_END_INDEX(dcmp,1,c))
j=jj-CHN_CELL_START_INDEX(dcmp,1,c)+gp
do i = istart(l)+gp, iend(1)+gp
T(i,j) = 0.26%(T(i+1,j)+T(i,j+1)+T(i-1,j)+T(i,j-1))
end do
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end do
c send latest data to next strip
call CHN_COPY_FACES(T_,CHN_NONPERIODIC,1,CHN_ALL,1,CHN_RIGHT,c,istart,
$ iend,ierr)
end do

c copy values from the points adjacent to the left periodic boundary
call CHN_COPY_GHOST_FACES(T_,CHN_PERIODIC_TRUNCATED,1,CHN_ALL,1,CHN_LEFT,-1,
$ istart,iend,ierr)

¢ update the values on the right periodic boundary

if (¢ .eq. CHN_Total_num_cells(dcmp)-1) then
jj = nj-1
j=jj-CHN_CELL_START_INDEX(dcmp,1,c)+gp
do i = 1+gp, ni+gp

T(i,j) = 0.26%(T(i+1,j)+T(i,j+1)+T(i-1,3j)+T(i,j-1))

end do

end if

We make the following observations.

- Copying across a periodic boundary on the right side of the grid in the right direction
(CHN_RIGHT) moves the data to the opposite side of the grid, i.e. the left side. Hence, we
use CHN_RIGHT to fill the points on the left periodic boundary.

- Similarly, we use CHN_LEFT to fill the points adjacent to the right periodic boundary.

- The n cuts of a section are numbered 0 through n — 1. The virtual periodic cuts on both
sides of the grid have sequence numbers —1 and n. Since they logically coincide, specifying
either —1 or n for the cut number results in the same copy operation.

10.4.2 Implicit periodic boundary conditions

If the interior point algorithm of the numerical scheme is implicit, it may be desirable to implement
periodic boundary conditions implicitly as well. For example, the numerical analyst may use the
ADI method of Section 6.4.1 for solving a numerical problem, which results in the solution
of (implicit) banded systems for each whole grid line. A periodic boundary condition can be
incorporated into the matrix system, but destroys the banded structure of the system by modifying
the first and the last few matrix rows.

A common solution is to decompose the modified matrix into submatrices, which can be
inverted by solving twice a banded system very close to the original. This banded system can
be solved using the method described in Section 6.4.1. In the process, some data has to be
transferred between the opposite sides of the grid, which can again be accomplished by the
Charon cell face copy routines with CHN_PERIODIC_TRUNCATED.
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10.5 Multigrid

One of the most efficient numerical methods for solving discretized partial differential equations is
multigrid. It is based on the notion that many classical iterative schemes are effective at removing
from the solution error components whose frequency is high relative to the grid spacing, but are
poor at damping low-frequency components. What is a low-frequency wave on a fine grid is a
high-frequency wave on a coarse grid, so it can be beneficial to employ a coarse grid to remove
the errors of the largest wave length, and interpolate the resulting solution to a finer grid to
remove errors of smaller wave length. A hierarchy of grids can be constructed, each finer than
the previous, so that errors of all wave lenghts are ultimately removed in the most efficient way.

Many iterative schemes can be used for error reduction on individual grids, and many refine-
ment strategies are possible. The most common approach is to divide all grid spacings in two
when moving to the next finer level. We will assume that a relaxation scheme for an individual
level has been chosen, and that it has been parallelized using Charon functions. The difficulty is
now to relate solutions and residuals on different grid levels to each other, while also respecting
locality as much as possible. By that we mean that all grid points coincident in space have
the same owner processor, regardless of the level of refinement. This is an important property,
because it allows us to interpolate to higher and restrict to lower levels of refinement without
concern about communications.

A possible solution is to define grids at all levels to have the same number of points as
the very finest, and skip any points not used. This is convenient, but very wasteful of space.
Moreover, on a cache-based computer the relative sparsity of data on the coarser grids would
cause a substantial loss in performance. A better way is to use Charon’s fine-tuning capabilities
to make sure that locality is obtained.

We will examine a 3D example. The grid has (n;(2F+1)) x (n, (25 +1)) x (n,(2F+1)) points,
where £ indicates the level of refinement. The smallest grid on which a solution is sought has
size Ny X Ny X n,, which corresponds with multigrid level £ = 0. Assume that all grid coordinates
start at zero. We first consider the case where this smallest grid can be partitioned uniformly—all
processors receive (almost) the same number of points—using the Charon functions of Section
3.2.

We refer to the value of cut 7 in coordinate direction d at grid level k as cfj;. Hence, ¢} | =n
means that on the coarsest grid the second cut in the z-direction (third coordinate direction) is
placed between points n — 1 and n. Now assume a section has been completed for the coarsest
grid. The requirement that coincident points in space at different levels of refinement be assigned
to the same processor implies the following consistency condition for cuts: cf; = 20’2;1 = 2kl ;.
Thus, all cuts at higher levels of refinement can be related to cuts at the lowest level of refinement.
Regardless of how the coarsest grid has been partitioned, the following code fragment will create
decompositions that observe the above consistency rule.

integer grid(0:KMAX), sect(0:KMAX), dcmp(0:KMAX), k, dir, cut, cell
do k = 1, KMAX
call CHN_CREATE_GRID(grid(k) ,CHN_GRID_COMM(grid(0)),3,ierr)
do dir = 0, 2
call CHN_SET_GRID_SIZE(grid(k),dir,2*CHN_GRID_SIZE(grid(k-1),dir)-1,ierr)
end do
call CHN_CREATE_SECTION(sect(k),grid(k),ierr)
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do dir = 0, 2
call CHN_SET_NUM_CUTS(sect (k) ,CHN_NUM_CUTS(sect(0) ,dir) ,ierr)
do cut = 0, CHN_NUM_CUTS(sect(0),dir)-1
call CHN_SET_CUT(sect(k),dir,cut,2*CHN_CUT(sect(k-1),dir,cut) ,ierr)
end do
end do
call CHN_CREATE_DECOMPOSITION(dcmp(k),sect(k),ierr)
do cell = 0, CHN_TOTAL_NUM_CELLS (dcmp(0))
call CHN_SET_CELL_OWNER (dcmp (k) ,CHN_CELL_OWNER (dcmp(0),cell),cell,ierr)
end do
end do

If the owners of the cells on the coarsest grid have been set using any of the predefined
decomposition functions (CHN_Set_uni/multi/solopartition_owners), then it is preferable
to use the same function for higher levels of refinement, because Charon communications will be
more efficient.

A more difficult situation arises if the coarsest grid can not—or should not—be partitioned
equitably among the processors. Some of the processors will then not receive any points at lower
levels of refinement, but they should receive their fair share of points at the higher levels. Several
strategies are conceivable to deal with this problem.

The simplest is to assign all points to a single processor once the grid becomes too coarse
(CHN_Set_solopartition_cuts/owners). This is quite efficient if there are many levels of
refinement, because it reduces the number of communications on coarse grids, while the commu-
nication volume is already small. The strategy can be implemented conveniently if two decompo-
sitions are defined for the grid at the base level k°, which is the coarsest level that is partitioned
equitably. The first is equitably partitioned, and the second is the solo-partition. Switching be-
tween the two is accomplished using CHN_Redistribute. Taking this approach, we never need
explicit communications to move data between grid levels.

Another strategy is to drop every other cut at each lower level of refinement below the
base level. Ownership of cells at the lower level can be derived from that at the higher level
by inspecting the eight level-k cells logically contained in each level-(k — 1) cell (k < k°); for
example, we can assign ownership of the level-(k — 1) cell to the processor that also owns the
(0,0, 0)-element of the (2 x 2 x 2)-cube of cells at level k. This is easy to program, and ascertains
that at least some data is already in the right place (owned by the same processor as before).
Now it may be advantageous to define two decompositions at each level up to and including &,
and to use redistributions to map between them.
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Index

List of constants

User parameters

CHN_ALL, 64 CHN_MAX_ERROR_STRING, 86 CHN_SILENT, 87
CHN_BOTH_SIDES, 64 CHN_MVALUE_MEMORY, 98 CHN_STAR, 67

CHN_BOX, 67 CHN_NONPERIODIC, 64 CHN_MIN_SYSTEM_KEY, 96
CHN_DEFAULT_SHAPE, 22 CHN_PERIODIC, 64 CHN_TEMP_MEMORY, 97
CHN_EQUAL_CUTS, 22 CHN_PERIODIC_TRUNCATED, 65

CHN_FATAL, 87 CHN_RIGHT, 64

CHN_LEFT, 64 CHN_SERIOUS, 87

Boolean return values, user error return codes

CHN_SUCCESS - 0 (no error)

CHN_ERR_ACCESS_TOGGLE — illegal attempt to (re)set ghost access
CHN_ERR_ADDRESS — illegal starting address

CHN_ERR_BUF_SIZE — buffer size not allowed (serial 1/0)
CHN_ERR_CELL — incorrect cell number

CHN_ERR_COMM — incorrect communicator

CHN_ERR_CUT — incorrect number of cuts, cut value, or index
CHN_ERR_DATA_TYPE — illegal data type

CHN_ERR_DECOMPOSITION — incorrect decomposition type
CHN_ERR_DIMENSION — incorrect dimension(ality)
CHN_ERR_ERROR_MODE — incorrect error handling mode
CHN_ERR_FILE_NAME — name of file specified for 1/O contains only blanks

CHN_ERR_FILE_NAME_LENGTH - file name too long
CHN_ERR_FILE_NOT_NAMED - file specified for I/O has no name
CHN_ERR_FILE_NOT_OPENED - file specified for I/O not opened

CHN_ERR_FILE_TYPE — file specified for |/O not binary direct access
CHN_ERR_GHOST_POINTS — illegal number of ghost points
CHN_ERR_GRID_MISMATCH — incompatible grids in redistribute
CHN_ERR_HANDLE — incorrect handle

CHN_ERR_INDEX — incorrect tensor component

CHN_ERR_KEY — illegal key

CHN_ERR_LOCAL_TOGGLE — illegal attempt to (re)set local execution mode
CHN_ERR_MASK — invalid or incompatible tensor mask
CHN_ERR_MEMORY_TYPE — incorrect type specified for system-claimed memory
CHN_ERR_NONLOCAL_VALUE - processor does not own value(s), but assign mode is local
CHN_ERR_NUM_BUFFERS — illegal number of CHN Mvalue buffers
CHN_ERR_NUM_SUBSCRIPTS - illegal number of subscripts
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CHN_ERR_OWNER
CHN_ERR_PANEL
CHN_ERR_PERIODIC
CHN_ERR_POINT
CHN_ERR_RANK
CHN_ERR_REMEMBER_TOGGLE
CHN_ERR_REMEMBERING
CHN_ERR_SECTION
CHN_ERR_SHAPE
CHN_ERR_SIDE
CHN_ERR_SIZE
CHN_ERR_TILE

System error return codes

CHN_ERR_ALLGATHERV
CHN_ERR_ALLOC
CHN_ERR_ATTR_GET
CHN_ERR_ATTR_PUT
CHN_ERR_BCAST
CHN_ERR_CREATE_KEYVAL
CHN_ERR_DELETE_KEY
CHN_ERR_GET_TILE
CHN_ERR_HASH_INSERT
CHN_ERR_INIT_TABLE
CHN_ERR_IRECV
CHN_ERR_MASK_ANALYSIS

INDEX

illegal owner

incorrect panel specification

illegal periodicity parameter

point not in grid

illegal tensor index or rank

illegal attempt to (re)set communication caching
cannot delete communication caching key within caching bracket
cannot place cuts in section

illegal shape (when defining unipartition section)
illegal side (used in copying faces)

incorrect grid, array, or tensor size

incorrect tile specification

CHN_ERR_NEW_HANDLE
CHN_ERR_NOT_COMMITTED
CHN_ERR_PUT_TILE
CHN_ERR_READ
CHN_ERR_REDUCE
CHN_ERR_RESET_BUFS
CHN_ERR_SEND
CHN_ERR_SORT_LIST
CHN_ERR_SPEED_EXECUTE
CHN_ERR_STORE_ALLGATHERV
CHN_ERR_STORE_BCAST
CHN_ERR_STORE_DRAIN_BUF

CHN_ERR_STORE_FILL_BUF
CHN_ERR_STORE_IRECV
CHN_ERR_STORE_REDUCE
CHN_ERR_STORE_RESET_BUFS
CHN_ERR_STORE_SEND
CHN_ERR_STORE_TEMP_REQUEST
CHN_ERR_STORE_TEMP_SIZE
CHN_ERR_STORE_WAIT
CHN_ERR_WAIT

CHN_ERR_WRITE



LIBRARY FUNCTIONS

Library functions

p: procedure; f: function returning value

CHN_Address (f),47
CHN_A1l_tensor_indices_first (f),37
CHN_All_tensor_indices_last (f),37
CHN_A1l_tensor_start_indices (f),36
CHN_Assign (p),46
CHN_Bcast_tile (p),73
CHN_Begin_ghost_access (p),57
CHN_Begin_local (p),56
CHN_Begin_remember (p),95
CHN_Cell_array_offset (f),36
CHN_Cell_array_size (f),36
CHN_Cell_coordinate (f),29
CHN_Cell_end_index (f),30
CHN_Cell_index (f),28
CHN_Cell_owner (f),29
CHN_Cell_size (f),29
CHN_Cell_start_index (f),29
CHN_Character_value (f),47
CHN_Char_value (f),47
CHN_Compact_distribution (p),32
CHN_Complex_value (f),47
CHN_Copy_faces (p),65
CHN_Copy_faces_all (p),67
CHN_Copy_ghost_faces (p),65
CHN_Create_decomposition (p),24
CHN_Create_distribution (p),30
CHN_Create_grid (p),17
CHN_Create_section (p),20
CHN_Create_tensor_mask (p),74
CHN_Cut (f),24

CHN_Datatype (f),35
CHN_Decomposition (f),35
CHN_Delete_decomposition (p),25
CHN_Delete_distribution (p),31
CHN_Delete_grid (p),18
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